950 resultados para THROUGH CELL
Resumo:
T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.
Resumo:
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The hippocampus receives input from upper levels of the association cortex and is implicated in many mnemonic processes, but the exact mechanisms by which it codes and stores information is an unresolved topic. This work examines the flow of information through the hippocampal formation while attempting to determine the computations that each of the hippocampal subfields performs in learning and memory. The formation, storage, and recall of hippocampal-dependent memories theoretically utilize an autoassociative attractor network that functions by implementing two competitive, yet complementary, processes. Pattern separation, hypothesized to occur in the dentate gyrus (DG), refers to the ability to decrease the similarity among incoming information by producing output patterns that overlap less than the inputs. In contrast, pattern completion, hypothesized to occur in the CA3 region, refers to the ability to reproduce a previously stored output pattern from a partial or degraded input pattern. Prior to addressing the functional role of the DG and CA3 subfields, the spatial firing properties of neurons in the dentate gyrus were examined. The principal cell of the dentate gyrus, the granule cell, has spatially selective place fields; however, the behavioral correlates of another excitatory cell, the mossy cell of the dentate polymorphic layer, are unknown. This report shows that putative mossy cells have spatially selective firing that consists of multiple fields similar to previously reported properties of granule cells. Other cells recorded from the DG had single place fields. Compared to cells with multiple fields, cells with single fields fired at a lower rate during sleep, were less likely to burst, and were more likely to be recorded simultaneously with a large population of neurons that were active during sleep and silent during behavior. These data suggest that single-field and multiple-field cells constitute at least two distinct cell classes in the DG. Based on these characteristics, we propose that putative mossy cells tend to fire in multiple, distinct locations in an environment, whereas putative granule cells tend to fire in single locations, similar to place fields of the CA1 and CA3 regions. Experimental evidence supporting the theories of pattern separation and pattern completion comes from both behavioral and electrophysiological tests. These studies specifically focused on the function of each subregion and made implicit assumptions about how environmental manipulations changed the representations encoded by the hippocampal inputs. However, the cell populations that provided these inputs were in most cases not directly examined. We conducted a series of studies to investigate the neural activity in the entorhinal cortex, dentate gyrus, and CA3 in the same experimental conditions, which allowed a direct comparison between the input and output representations. The results show that the dentate gyrus representation changes between the familiar and cue altered environments more than its input representations, whereas the CA3 representation changes less than its input representations. These findings are consistent with longstanding computational models proposing that (1) CA3 is an associative memory system performing pattern completion in order to recall previous memories from partial inputs, and (2) the dentate gyrus performs pattern separation to help store different memories in ways that reduce interference when the memories are subsequently recalled.
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.
Resumo:
Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.
Resumo:
B-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study, we examined BLYS gene expression, function, and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells, including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL), playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors, NF-kappaB and NFAT, are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.
Resumo:
The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.
Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy.
Resumo:
TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.
Resumo:
SUMOylation has emerged as an important regulatory mechanism for protein function. SUMO-specific proteases (SENPs) are essential for removing SUMO from conjugated proteins in many different systems, but the physiological functions of SENPs are poorly understood. STAT5 (Signal Transducer and Activator of Transcription 5) plays a critical role in the development of lymphoid cells. However, it is not known whether STAT5 is regulated by the SUMOylation pathway. Here, we showed that SUMOylated STAT5 is accumulated in SENP1-/- lymphoid precursors. SENP1 deficiency results in severe defects in early T and B cell development, similar to that observed in mice harboring a complete inactivation of STAT5. Because STAT5 is SUMOylated and acetylated at the same lysine residue, SENP1 deficiency blocks STAT5 in the SUMOylation state, resulting in diminished STAT5 acetylation and phosphorylation, and defective lymphoid development. Thus, our results reveal a novel function of SENP1 in the regulation of early lymphoid development via an acetylation/SUMOylation switch in STAT5.
Resumo:
Uridine-rich small nuclear (U snRNAs), with the exception of the U6 snRNA, are RNA polymerase II (RNAPII) transcripts. The mechanism of 3’ cleavage of snRNAs has been unknown until recently. This area was greatly advanced when 12 of the Integrator complex subunits (IntS) were purified in 2005 through their interaction with the C-terminal domain (CTD) of the large subunit (RpbI) of RNAPII. Subsequently, our lab performed a genome-wide RNAi screen that identified two more members of the complex that we have termed IntS13 and IntS14. We have determined that IntS9 and 11 mediate the 3’ cleavage of snRNAs, but the exact function of the other subunits remains unknown. However, through the use of a U7 snRNA-GFP reporter and RNAi knockdown of the Integrator subunits in Drosophila S2 cells, we have shown that all subunits are required for the proper processing of snRNAs, albeit to differing degrees. Because snRNA transcription takes place in the nucleus of the cell, it is expected that all of the Integrator subunits would exhibit nuclear localization, but the knowledge of discrete subnuclear localization (i.e. to Cajal bodies) of any of the subunits could provide important clues to the function of that subunit. In this study, we used a cell biological approach to determine the localization of the 14 Integrator subunits. We hypothesized that the majority of the subunits would be nuclear, however, a few would display distinct localization to the Cajal bodies, as this is where snRNA genes are localized and transcribed. The specific aims and results are: 1. To determine the subcellular localization of the 14 Integrator subunits. To accomplish this, mCherry and GFP tagged clones were generated for each of the 14 Drosophila and human Integrator subunits. Confocal microscopy studies revealed that the majority of the subunits were diffuse in the nucleus, however, IntS3 formed discrete subnuclear foci. Surprisingly, two of the subunits, IntS2 and 7 were observed in cytoplasmic foci. 2. To further characterize Integrator subunits with unique subcellular localizations. Colocalization studies with endogenous IntS3 and Cajal body marker, coilin, showed that these two proteins overlap, and from this we concluded that IntS3 localized to Cajal bodies. Additionally, colocalization studies with mCherry-tagged IntS2 and 7 and the P body marker, Dcp1, revealed that these proteins colocalize as well. IntS7, however, is more stable in cytoplasmic foci than Dcp1. It was also shown through RNAi knockdown of Integrator subunits, that the cytoplasmic localization of IntS2 and 7 is dependent on the expression of IntS1 and 11 in S2 cells.
Resumo:
The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.
Resumo:
Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.
Resumo:
Actinobacillus actinomycetemcomitans (Aa) is a gram-negative coccobacillus implicated as a major pathogen in juvenile periodontitis. The immunosuppressive activity of a sonic extract (designated 100SN) derived from Aa was investigated. 100SN suppressed spontaneous proliferation as well as proliferative response to the mitogens, PHA and PWM, of human peripheral blood mononuclear cells (PBMC). 100SN-induced suppression of PHA-stimulated proliferation was heat-sensitive, inactivated by pronase and trypsin, dose-dependent and non-cytotoxic. There were no significant changes in the CD4$\sp+$ or CD8$\sp+$ subsets of PBMC after 7-day incubation with 100SN. There was a trend toward increased levels of the CD4$\sp+$CD45R$\sp{\rm hi}$CDw29$\sp{\rm lo}$ (naive cells, associated with suppressor-inducer activity) and CD4$\sp+$CDw29$\sp{\rm hi}$CD45R$\sp{\rm lo}$ (memory cells, associated with helper-inducer activity) subsets. The target of 100SN appeared to be the non-adherent cells and suppression by 100SN could not be reversed by indomethacin (IDM), the cyclo-oxygenase inhibitor of prostaglandin (PG) synthesis. The mechanism of 100SN-induced suppression was studied in terms of inhibition involving IL-2-regulated T cell proliferation and the results point to the possibility that suppression occurred subsequent to IL-2 receptor binding.^ The suppressive activity observed could occur through multiple mechanisms including cell-cell; contact or release of soluble factors. Supernatants derived from 7-day cultures of PBMC and 100SN (designated CSN-A) were able to suppress proliferative response of PBMC to PHA without affecting cell viability. Analysis of CSN-A showed that it contained PGE2 and soluble IL-2 receptors. Suppression by CSN-A could be partially overcome by either IDM or exogenous IL-2. Significant suppression was also maintained when both IDM and exogenous IL-2 were added at the same time. These findings suggest that PGE2 and soluble IL-2 receptors contribute to the suppression observed but other suppressive cytokine(s) may be involved. Collectively, the data indicate that a factor derived from oral bacteria associated with juvenile periodontitis have profound effects on cellular immune responses, and that these effects may be partially mediated by secondary factors produced by the host in response to the bacteria. ^
Resumo:
This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^