978 resultados para T Cell Receptor
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.
Resumo:
The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.
Resumo:
The potent, conformationally biased C5a agonist peptide YSFKPMPLaR (C5a(65-74), Y65, F67, P69, P71, D-Ala73) was used as a template to gain insight into the nature and importance of lysine at position 68 in the peptide-receptor interaction. A panel of YSFKPMPLaR analogs with systematic substitutions for Lys68 was evaluated for C5a receptor (C5aR) binding affinity and activation in two well-characterized assay systems: human polymorphonuclear leukocytes (PMNs) and human fetal artery. In addition, we determined the activity of these new analogs in transfected rat basophilic leukemia (RBL) cells in which the Glu at position 199 of the C5aR (wtGlu199) was replaced by a Gin (C5aR-Gln199) or a Lys (C5aR-Lys199). Our results indicated that Lys68 in YSFKPMPLaR plays an important role in binding the C5aR expressed on PMNs and RBL cells. Furthermore, the data indicated that Lys68 interacted with Glu199 of the C5aR in PMNs and RBL cells. In human fetal artery, however, Lys68 substitutions had little or no effect on activity, which suggested that the receptor conformation may be different in this tissue. Thus, the interaction between Lys68 of the decapeptide agonist and Glu199 of the C5aR may be cell type-specific and may form the molecular basis for tissue-specific responses to C5a agonists.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
The p75 neurotrophin receptor (p75NTR) has been shown to mediate neuronal death through an unknown pathway. We microinjected p75NTR expression plasmids into sensory neurons in the presence of growth factors and assessed the effect of the expressed proteins on cell survival. We show that, unlike other members of the TNFR family, p75NTR signals death through a unique caspase-dependent death pathway that does not involve the death domain and is differentially regulated by Bcl-2 family members: the anti-apoptotic molecule Bcl-2 both promoted, and was required for, p75NTR killing, whereas killing was inhibited by its homologue BcI-x(L). These results demonstrate that Bcl-2, through distinct molecular mechanisms, either promotes or inhibits neuronal death depending on the nature of the death stimulus.
Resumo:
Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.
Resumo:
Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.
Resumo:
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using H-1-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.
Resumo:
Recently, a bi-allelic polymorphism in the glucocorticoid receptor gene (GRL) has been shown to be associated with individuals at high risk of developing hypertension and accumulation of abdominal visceral fat, a known risk factor for cardiovascular disease. The evaluate the role of GRL in essential hypertension and obesity, case-control studies were conducted using 88 hypertensive, 123 normotensive, 150 lean and 94 obese subjects. Genotypes for a highly polymorphic microsatellite marker (D5S207) located within 200 kb of the glucocorticoid receptor gene, were determined by PCR. Allele frequencies between hypertensive and normotensive groups were significantly (P = 0.0005) different whereas no significant differences were observed between lean and obese populations. In conclusion, the results suggest that the glucocorticoid receptor gene or perhaps another gene located in close proximity and in linkage disequilibrium with D5S207, is involved in hypertension development