902 resultados para System for energy certification of buildings
Resumo:
Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.
Resumo:
Assembly and modulation of focal adhesions during dynamic adhesive processes are poorly understood. We describe here the use of ventral plasma membranes from adherent fibroblasts to explore mechanisms regulating integrin distribution and function in a system that preserves the integration of these receptors into the plasma membrane. We find that partial disruption of the cellular organization responsible for the maintenance of organized adhesive sites allows modulation of integrin distribution by divalent cations. High Ca2+ concentrations induce quasi-reversible diffusion of β1 integrins out of focal adhesions, whereas low Ca2+ concentrations induce irreversible recruitment of β1 receptors along extracellular matrix fibrils, as shown by immunofluorescence and electron microscopy. Both effects are independent from the presence of actin stress fibers in this system. Experiments with cells expressing truncated β1 receptors show that the cytoplasmic portion of β1 is required for low Ca2+-induced recruitment of the receptors to matrix fibrils. Analysis with function-modulating antibodies indicates that divalent cation-mediated receptor distribution within the membrane correlates with changes in the functional state of the receptors. Moreover, reconstitution experiments show that purified α-actinin colocalizes and redistributes with β1 receptors on ventral plasma membranes depleted of actin, implicating binding of α-actinin to the receptors. Finally, we found that recruitment of exogenous actin is specifically restricted to focal adhesions under conditions in which new actin polymerization is inhibited. Our data show that the described system can be exploited to investigate the mechanisms of integrin function in an experimental setup that permits receptor redistribution. The possibility to uncouple, under cell-free conditions, events involved in focal adhesion and actin cytoskeleton assembly should facilitate the comprehension of the underlying molecular mechanisms.
Resumo:
The initiation of anaphase and exit from mitosis depend on the anaphase-promoting complex (APC), which mediates the ubiquitin-dependent proteolysis of anaphase-inhibiting proteins and mitotic cyclins. We have analyzed whether protein phosphatases are required for mitotic APC activation. In Xenopus egg extracts APC activation occurs normally in the presence of protein phosphatase 1 inhibitors, suggesting that the anaphase defects caused by protein phosphatase 1 mutation in several organisms are not due to a failure to activate the APC. Contrary to this, the initiation of mitotic cyclin B proteolysis is prevented by inhibitors of protein phosphatase 2A such as okadaic acid. Okadaic acid induces an activity that inhibits cyclin B ubiquitination. We refer to this activity as inhibitor of mitotic proteolysis because it also prevents the degradation of other APC substrates. A similar activity exists in extracts of Xenopus eggs that are arrested at the second meiotic metaphase by the cytostatic factor activity of the protein kinase mos. In Xenopus eggs, the initiation of anaphase II may therefore be prevented by an inhibitor of APC-dependent ubiquitination.
Resumo:
The proper localization of resident membrane proteins to the trans-Golgi network (TGN) involves mechanisms for both TGN retention and retrieval from post-TGN compartments. In this study we report identification of a new gene, GRD20, involved in protein sorting in the TGN/endosomal system of Saccharomyces cerevisiae. A strain carrying a transposon insertion allele of GRD20 exhibited rapid vacuolar degradation of the resident TGN endoprotease Kex2p and aberrantly secreted ∼50% of the soluble vacuolar hydrolase carboxypeptidase Y. The Kex2p mislocalization and carboxypeptidase Y missorting phenotypes were exhibited rapidly after loss of Grd20p function in grd20 temperature-sensitive mutant strains, indicating that Grd20p plays a direct role in these processes. Surprisingly, little if any vacuolar degradation was observed for the TGN membrane proteins A-ALP and Vps10p, underscoring a difference in trafficking patterns for these proteins compared with that of Kex2p. A grd20 null mutant strain exhibited extremely slow growth and a defect in polarization of the actin cytoskeleton, and these two phenotypes were invariably linked in a collection of randomly mutagenized grd20 alleles. GRD20 encodes a hydrophilic protein that partially associates with the TGN. The discovery of GRD20 suggests a link between the cytoskeleton and function of the yeast TGN.
Resumo:
An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.
Resumo:
We present a novel type of spectral diffusion experiment in the millikelvin range to characterize the energy landscape of a protein as compared with that of a glass. We measure the time evolution of spectral holes for more than 300 hr after well-defined initial nonequilibrium conditions. We show that the model of noninteracting two-level systems can describe spectral diffusion in the glass, but fails for the protein. Our results further demonstrate that randomness in the energy landscape of a protein shows features of organization. There are “deep minimum” states separated by barriers, the heights of which we are able to estimate. The energy landscape of a glass is featureless by comparison.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.
Resumo:
The role of symmetry in the folding of proteins is discussed using energy landscape theory. An analytical argument shows it is much easier to find sequences with funneled energy landscape capable of fast folding if the structure is symmetric. The analogy with phase transitions of small clusters with magic numbers is discussed.
Resumo:
N-Ethylmaleimide-sensitive fusion protein (NSF) is an ATPase known to have an essential role in intracellular membrane transport events. Recently, cDNA clones encoding a Drosophila melanogaster homolog of this protein, named dNSF, were characterized and found to be expressed in the nervous system. We now report the identification of a second homolog of NSF, called dNSF-2 within this species and report evidence that this ubiquitous and widely utilized fusion protein belongs to a multigene family. The predicted amino acid sequence of dNSF-2 is 84.5% identical to dNSF (hereafter named dNSF-1), 59% identical to NSF from Chinese hamster, and 38.5% identical to the yeast homolog SEC18. The highest similarity was found in a region of dNSF-2 containing one of two ATP-binding sites; this region is most similar to members of a superfamily of ATPases. dNSF-2 is localized to a region between bands 87F12 and 88A3 on chromosome 3, and in situ hybridization techniques revealed expression in the nervous system during embryogenesis and in several imaginal discs and secretory structures in the larvae. Developmental modulation of dNSF-2 expression suggests that quantitative changes in the secretory apparatus are important in histogenesis.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.
Resumo:
Aims. We study in detail nine sources in the direction of the young σ Orionis cluster, which is considered to be a unique site for studying stellar and substellar formation. The nine sources were selected because of their peculiar properties, such as extremely-red infrared colours or excessively strong Hα emission for their blue optical colours. Methods. We acquired high-quality, low-resolution spectroscopy (R ∼ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analysed [24]-band photometry from MIPS/Spitzer and compiled the highest quality photometric dataset available at the ViJHK_s passbands and the four IRAC/Spitzer channels, for constructing accurate spectral energy distributions between 0.55 and 24 μm. Results. The nine targets were classified into: one Herbig Ae/Be star with a scattering edge-on disc; two G-type stars; one X-ray flaring, early-M, young star with chromospheric Hα emission; one very low-mass, accreting, young spectroscopic binary; two young objects at the brown-dwarf boundary with the characteristics of classical T Tauri stars; and two emission-line galaxies, one undergoing star formation, and another whose spectral energy distribution is dominated by an active galactic nucleus. We also discovered three infrared sources associated with overdensities in a cold cloud of the cluster centre. Conclusions. Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and evolution of young stars and candidates in the σ Orionis cluster.
Resumo:
This work presents a forensic analysis of buildings affected by mining subsidence, which is based on deformation data obtained by Differential Interferometry (DInSAR). The proposed test site is La Union village (Murcia, SE Spain) where subsidence was triggered in an industrial area due to the collapse of abandoned underground mining labours occurred in 1998. In the first part of this work the study area was introduced, describing the spatial and temporal evolution of ground subsidence, through the elaboration of a cracks map on the buildings located within the affected area. In the second part, the evolution of the most significant cracks found in the most damaged buildings was monitored using biaxial extensometric units and inclinometers. This article describes the work performed in the third part, where DInSAR processing of satellite radar data, available between 1998 and 2008, has permitted to determine the spatial and temporal evolution of the deformation of all the buildings of the study area in a period when no continuous in situ instrumental data is available. Additionally, the comparison of these results with the forensic data gathered in the 2005–2008 period, reveal that there is a coincidence between damaged buildings, buildings where extensometers register significant movements of cracks, and buildings deformation estimated from radar data. As a result, it has been demonstrated that the integration of DInSAR data into forensic analysis methodologies contributes to improve significantly the assessment of the damages of buildings affected by mining subsidence.
Resumo:
This article analyzes the appropriateness of a text summarization system, COMPENDIUM, for generating abstracts of biomedical papers. Two approaches are suggested: an extractive (COMPENDIUM E), which only selects and extracts the most relevant sentences of the documents, and an abstractive-oriented one (COMPENDIUM E–A), thus facing also the challenge of abstractive summarization. This novel strategy combines extractive information, with some pieces of information of the article that have been previously compressed or fused. Specifically, in this article, we want to study: i) whether COMPENDIUM produces good summaries in the biomedical domain; ii) which summarization approach is more suitable; and iii) the opinion of real users towards automatic summaries. Therefore, two types of evaluation were performed: quantitative and qualitative, for evaluating both the information contained in the summaries, as well as the user satisfaction. Results show that extractive and abstractive-oriented summaries perform similarly as far as the information they contain, so both approaches are able to keep the relevant information of the source documents, but the latter is more appropriate from a human perspective, when a user satisfaction assessment is carried out. This also confirms the suitability of our suggested approach for generating summaries following an abstractive-oriented paradigm.