998 resultados para Suspended Sediment Flux


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An array of four sediment trap moorings recorded the particulate flux across the Antarctic Circumpolar Current (ACC) at 170 °W, between November 1996 and January 1998, as part of the US JGOFS-Antarctic Environment and Southern Ocean Process Study (AESOPS) program. The trap locations represent sampling within the Polar Frontal Zone, the Antarctic Polar Front, the Antarctic Zone and the Southern Antarctic Zone. Here we report observations from 1000 m below the sea-surface compared to seafloor and surface water distributions. Sub-sample splits from each trap were obtained and total diatom flux and species composition were determined. The diatom fluxes were quantified using both a dilution and a 'spike' method to allow for the rapid repeatability of measurements. Diatom flux was found to be highly seasonal across the ACC particularly at higher latitudes. Marine snow aggregates of intact diatom cells and chains were the major components of the biogenic flux. Siliceous particle size was noted to decrease with increasing latitude, which could be aligned with a shift of the diatom assemblage to small-size species/sea-ice affiliated species. A 'double-structured' diatom flux was recorded at the location of the Antarctic Polar Front trap, with a shift in the diatom assemblage from larger to smaller diatoms in the second flux episode. The sediment trap assemblage shows deviations from the surface water assemblage, while surface sediment samples indicate that significant dissolution occurs after 1000 m and at the sediment-water interface. Estimation of diatom biovolumes across the ACC shows that large diatoms have the potential to greatly impact biogenic fluxes to the ocean interior despite their low fluxes. Small species of the genus Fragilariopsis could potentially export as much Corg as Fragilariopsis kerguelensis near the retreating ice edge. However, their low abundance in the surface sediments also suggests that these diatoms are a shallow export species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on relative contents of principal diatom groups in suspended matter collected by a separator on the way of the ship and in bottom sediments from different areas of the Indian Ocean are presented in the paper.