906 resultados para Submerged aquatic vegetation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With water immersion, gravity is partly eliminated, and the water exerts a pressure on the body surface. Consequently there is a blood volume shift from the periphery to the central circulation, resulting in marked volume loading of the thorax and heart. This paper presents a selection of published literature on water immersion, balneotherapy, aqua exercises, and swimming, in patients with left ventricular dysfunction (LVD) and/or stable chronic heart failure (CHF). Based on exploratory studies, central hemodynamic and neurohumoral responses of aquatic therapies will be illustrated. Major findings are: 1. In LVD and CHF, a positive effect of therapeutic warm-water tub bathing has been observed, which is assumed to be from afterload reduction due to peripheral vasodilatation caused by the warm water. 2. In coronary patients with LVD, at low-level water cycling the heart is working more efficiently than at lowlevel cycling outside of water. 3. In patients with previous extensive myocardial infarction, upright immersion to the neck resulted in temporary pathological increases in mean pulmonary artery pressure (mPAP) and mean pulmonary capillary pressures (mPCP). 4. Additionally, during slow swimming (20-25m/min) the mPAP and/or PCP were higher than during supine cycling outside water at a 100W load. 5. In CHF patients, neck- deep immersion resulted in a decrease or no change in stroke volume. 6. Although patients are hemodynamically compromised, they usually maintain a feeling of well-being during aquatic therapy. Based on these findings, clinical indications for aquatic therapies are proposed and ideas are presented to provoke further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-rich copper mine tailings, called stamp sands, were dumped by mining companies directly into streams and along the Lake Superior shoreline, degrading Keweenaw Peninsula waterways. One of the largest disposal sites is near Gay, Michigan, where tailings have been moved along the shoreline by currents since mining ceased. As a result, the smallest sand particles have been washed into deeper water and are filling the interstitial spaces of Buffalo Reef, a critical lake trout spawning site. This research is the first to investigate if stamp sand is detrimental to survival and early development of eggs and larvae of lake sturgeon, lake trout, and Northern leopard frogs, and also examines if the presence of stamp sands influences substrate selection of earthworms. This study found that stamp sand had significantly larger mean particle sizes and irregular shapes compared to natural sand, and earthworms show a strong preference for natural substrate over any combination that included stamp sand. Additionally, copper analysis (Cu2+) of surface water over stamp sand and natural sand showed concentrations were significantly higher in stamp sand surface water (100 μg/L) compared to natural sand surface water (10 μg/L). Frog embryos had similar hatch success over both types of sand, but tadpoles reared over natural sand grew faster and had higher survival rates. Eggs of lake sturgeon showed similar hatch success and development over natural vs. stamp sand over 17 days, while lake trout eggs hatched earlier and developed faster when incubated over stamp sand, yet showed similar development over a 163 day period. Copper from stamp sand appears to impact amphibians more than fish species in this study. These results will help determine what impact stamp sand has on organisms found throughout the Keweenaw Peninsula which encounter the material at some point in their life history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boreal peatlands are important in the global carbon cycle. Despite covering only 3% of the global land area, peatlands store approximately one third of all soil carbon. Temperature is one of the major drivers in peatland carbon cycling as it affects both plant production and CO2 fluxes from soils. However, it is relatively unknown how boreal peatland plant photosynthesis is affected by higher temperatures. Therefore, we measured plant photosynthetic rates under two different warming treatments in a poor fen in Northern Michigan. Eighteen plots were established that were divided into three treatments: control, open-top chamber (OTC) warming and infrared (IR) lamp warming. Previous work at this site has shown that there was a significant increase in canopy and peat temperature with IR warming (5°C and 1.4°C respectively), while the OTC’s had mixed overall warming. Plots were divided equally into lawns and hummocks. We measured mid-day carbon dioxide (CO2) uptake on sedges (Carex utriculata), shrubs (Chamaedaphne calyculata) and Sphagnum mosses. Sphagnum moss net primary production (NPP) was also measured with cranked wires and compared with CO2 uptake. Our results indicate that there was no significant difference in sedge CO2 uptake, while shrub CO2 uptake significantly decreased with warming. A significant increase occurred in Sphagnum moss gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE). Contrary to the positive CO2 exchange of Sphagnum, overall NPP decreased significantly in hummocks with both warming treatments. The results of the study indicate that temperature partly limits the photosynthetic capacity of plants in sub-boreal peatlands, but not all species respond similarly to higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation communities affect carbon and nitrogen dynamics in the subsurface water of mineral wetlands through the quality of their litter, their uptake of nutrients, root exudation and their effects on redox potential. However, vegetation influence on subsurface nutrient dynamics is often overshadowed by the influences of hydrology, soils and geology on nutrient dynamics. The effects of vegetation communities on carbon and nitrogen dynamics are important to consider when managing land that may change vegetation type or quantity so that wetland ecosystem functions can be retained. This study was established to determine the magnitude of the influences and interaction of vegetation cover and hydrology, in the form of water table fluctuations, on carbon and nitrogen dynamics in a northern forested riparian wetland. Dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrate (NO3-) and ammonium (NH4+) concentrations were collected from a piezometer network in four different vegetation communities and were found to show complex responses to vegetation cover and water table fluctuations. Dissolved organic carbon, DIC, NO3- and NH4+ concentrations were influenced by forest vegetation cover. Both NO3- and NH4+ were also influenced by water table fluctuations. However, for DOC and NH4+ concentrations there appeared to be more complex interactions than were measured by this study. The results of canonical correspondence analysis (CCA) and analysis of variance (ANOVA) did not correspond in relationship to the significance of vegetation communities. Dissolved inorganic carbon was influenced by an interaction between vegetation cover and water table fluctuations. More hydrological information is needed to make stronger conclusions about the relationship between vegetation and hydrology in controlling carbon and nitrogen dynamics in a forested riparian wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A shift in plant communities of the Water Conservation Areas (WCAs) within the Everglades has been linked to changes in hydrology and high levels of nutrient loading from surrounding agicultural areas. This has resulted in the encroachment of dense cattail stands (Typha domingensis) into areas that had previously been a ridge and slough landscape populated primarily by native sawgrass (Cladium jamaicense). In order to study ecological management solutions in this area, WCA-2A was broken into study plots; several of which became open water areas through the application of herbicide and burning regimens. The open water areas allowed for Chara spp (a submersed algal species) to replace Typha domingensis as the dominant macrophyte. This study investigated the polymer and ionic profiles of Chara spp, Typha domingensis and Cladium jamaicense and their contributions to detrital flocculent (floc) in the study plots where they are the dominant macrophytes. Floc is not only an important food source for aquatic species; it also supports many algal, fungal and bacterial communities. Data gathered in this study indicated that the floc sample from a phosphorus enriched open water study plot (EO1) where Chara spp was the dominant macrophyte may contain cell wall polymers from sources other than Chara spp (most likely Typha domingensis), while the chemical and polymeric profile of the floc of the study plot where Typha domingensis is the dominant macrophyte (EC1) suggests that the floc layer has contributions from algal sources as well as Typha domingensis. Additionally, monoclonal antibodies to Arabinoglalactan protein (AGP) and (1,4)-β-D galactan were identified as possible biomarkers for distinguishing algal dominated floc layers from layers dominated by emergent vegetation. Calcium labeling could be a useful tool for this as well because of the high amount of Ca2+ associated with Chara spp cell walls. When looking into the soluble phosphorus content of the macrophytes and paired floc samples of WCA-2A, it was found that Chara spp may be contributing a greater amount of Ca-bound phosphorus to floc layers where it is the dominant macrophyte when compared to floc layers from study plots dominated by emergent macrophytes. Floc layers also appear to be acting as a nutrient sink for soluble phosphorus. The findings of this study support the overall hypothesis that the shift from native emergent macrophyte communities to submersed macrophyte communities in study sites of the northern Everglades is affecting the polymeric/chemical profile and ionic content of detrital floc layers. The effects of this shift may contribute to changes in complex flocculent community dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alps provide a high habitat diversity for plant species, structured by broad- and fine-scale abiotic site conditions. In man-made grasslands, vegetation composition is additionally affected by the type of landuse. We recorded vegetation composition in 216 parcels of grassland in 12 municipalities representing an area of 170 x 70 km in the south-eastern part of the Swiss Alps. Each parcel was characterized by a combination of altitudinal level (valley, intermediate, alp). traditional landuse (mown. grazed), current management (mown, grazed, abandoned). and Fertilization (unfertilized, fertilized). For each parcel we also assessed the abiotic factors aspect, slope, pH value, and geographic coordinates, and for each municipality annual precipitation and its cultural tradition. We analysed vegetation composition using (i) variation partitioning in RDA. (ii) cover of graminoids. non-legume forbs, and legumes, and (iii) dominance and frequency of species. Species composition was determined by, in decreasing order of variation explained. landuse, broad-scale abiotic factors, fine-scale abiotic factors. and cultural tradition. Current socio-economically motivated landuse changes, such as grazing of unfertilized former meadows or their abandonment, strongly affect vegetation composition. In our study, the frequency of characteristic meadow species was significantly smaller in grazed and even smaller in abandoned parcels than in still mown ones, suggesting less severe consequences of grazing for vegetation composition than of abandonment. Therefore. low-intensity grazing and mowing every few years should be considered valuable conservation alternatives to abandonment. Furthermore. because each landuse type was characterized by different species. a high variety of landuse types should be promoted to preserve plant species diversity in Alpine grasslands. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.