837 resultados para Subjective-probability
Resumo:
Alternative splicing of gene transcripts greatly expands the functional capacity of the genome, and certain splice isoforms may indicate specific disease states such as cancer. Splice junction microarrays interrogate thousands of splice junctions, but data analysis is difficult and error prone because of the increased complexity compared to differential gene expression analysis. We present Rank Change Detection (RCD) as a method to identify differential splicing events based upon a straightforward probabilistic model comparing the over-or underrepresentation of two or more competing isoforms. RCD has advantages over commonly used methods because it is robust to false positive errors due to nonlinear trends in microarray measurements. Further, RCD does not depend on prior knowledge of splice isoforms, yet it takes advantage of the inherent structure of mutually exclusive junctions, and it is conceptually generalizable to other types of splicing arrays or RNA-Seq. RCD specifically identifies the biologically important cases when a splice junction becomes more or less prevalent compared to other mutually exclusive junctions. The example data is from different cell lines of glioblastoma tumors assayed with Agilent microarrays.
Resumo:
Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.
Resumo:
Unlike humans, who communicate in frequency bands between 250 Hz and 6 kHz, rats can communicate in frequencies above 18 kHz. Their vocalization types depend on the context and are normally associated to subjective or emotional states. It was reported significant vocal changes due to administration of replacement testosterone in a trained tenor singer with hypogonadism. Speech-Language Pathology clinical practices are being sought by singers who sporadically use anabolic steroids associated with physical exercise. They report difficulties in reaching and keeping high notes, ""breakage"" in the passage of musical notes and post singing vocal fatigue. Those abnormalities could be raised by the association of anabolic steroids and physical exercise. Thus, in order to verify if this association could promote vocal changes, maximum, minimum and fundamental frequencies and call duration in rats treated with anabolic steroids and physically trained (10 weeks duration) were evaluated. The vocalizations were obtained by handling the animals. At the end of that period, rats treated and trained showed significant decrease in call duration, but not in other parameters. The decrease in call duration could be associated to functional alterations in the vocal folds of treated and trained animals due to a synergism between anabolic steroids and physical training. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3488350]
Resumo:
Aim To describe the perceptions and attitudes of registered nurses (RNs) towards adverse events (AEs) in nursing care. Background The professionals` subjective perspectives should be taken into account for the prevention of AEs in care settings. Method Schutz`s social phenomenology was developed. Interviews were conducted with nine Intensive Care Unit RNs. Results The following five descriptive categories emerged: (1) the occurrence of AEs is inherent to the human condition but provokes a feeling of insecurity, (2) the occurrence of AEs indicates the existence of failures in health care systematization, (3) the professionals` attitudes towards AEs should be permeated by ethical principles; (4) the priority regarding AEs should be the mitigation of harm to patients, and (5) decisions regarding the communication of AEs were determined by the severity of the error. Conclusions The various subjective perspectives related to the occurrence of AEs requires a health care systematization with a focus on prevention. Ethical behaviour is essential for the patients` safety. Implications for nursing management Activities aimed at the prevention of AEs should be integrated jointly with both the professionals and the health care institution. A culture of safety, not punishment, and improvement in the quality of care provided to patients should be priorities.
Anthropometric characteristics and motor skills in talent selection and development in indoor soccer
Resumo:
Kick performance, anthropometric characteristics, slalom, and linear running were assessed in 49 (24 elite, 25 nonelite) postpubertal indoor soccer players in order to (a) verify whether anthropometric characteristics and physical and technical capacities can distinguish players of different competitive levels, (b) compare the kicking kinematics of these groups, with and without a defined target, and (c) compare results on the assessments and coaches` subjective rankings of the players. Thigh circumference and specific technical capacities differentiated the players by level of play; cluster analysis correctly classified 77.5% of the players. The correlation between players` standardized measures and the coaches` rankings was 0.29. Anthropometric characteristics and physical capacities do not necessarily differentiate players at post-pubertal stages and should not be overvalued during early development. Considering the coaches` rankings, performance measures outside the specific game conditions may not be useful in identification of talented players.
Resumo:
Purpose Adverse drug events (ADEs) are harmful and occur with alarming frequency in critically ill patients. Complex pharmacotherapy with multiple medications increases the probability of a drug interaction (DI) and ADEs in patients in intensive care units (ICUs). The objective of the study is to determine the frequency of ADEs among patients in the ICU of a university hospital and the drugs implicated. Also, factors associated with ADEs are investigated. Methods This cross-sectional study investigated 299 medical records of patients hospitalized for 5 or more days in an ICU. ADEs were identified through intensive monitoring adopted in hospital pharmacovigilance and also ADE triggers. Adverse drug reactions (ADR) causality was classified using the Naranjo algorithm. Data were analyzed through descriptive analysis, and through univariate and multiple logistic regression. Results The most frequent ADEs were ADRs type A, of possible causality and moderate severity. The most frequent ADR was drug-induced acute kidney injury. Patients with ADEs related to DIs corresponded to 7% of the sample. The multiple logistic regression showed that length of hospitalization (OR = 1.06) and administration of cardiovascular drugs (OR = 2.2) were associated with the occurrence of ADEs. Conclusion Adverse drug reactions of clinical significance were the most frequent ADEs in the ICU studied, which reduces patient safety. The number of ADEs related to drug interactions was small, suggesting that clinical manifestations of drug interactions that harm patients are not frequent in ICUs.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
We proposed a connection admission control (CAC) to monitor the traffic in a multi-rate WDM optical network. The CAC searches for the shortest path connecting source and destination nodes, assigns wavelengths with enough bandwidth to serve the requests, supervises the traffic in the most required nodes, and if needed activates a reserved wavelength to release bandwidth according to traffic demand. We used a scale-free network topology, which includes highly connected nodes ( hubs), to enhance the monitoring procedure. Numerical results obtained from computational simulations show improved network performance evaluated in terms of blocking probability.
Resumo:
This paper analyses an optical network architecture composed by an arrangement of nodes equipped with multi-granular optical cross-connects (MG-OXCs) in addition to the usual optical cross-connects (OXCs). Then, selected network nodes can perform both waveband as well as traffic grooming operations and our goal is to assess the improvement on network performance brought by these additional capabilities. Specifically, the influence of the MG-OXC multi-granularity on the blocking probability is evaluated for 16 classes of service over a network based on the NSFNet topology. A mechanism of fairness in bandwidth capacity is also added to the connection admission control to manage the blocking probabilities of all kind of bandwidth requirements. Comprehensive computational simulation are carried out to compare eight distinct node architectures, showing that an adequate combination of waveband and single-wavelength ports of the MG-OXCs and OXCs allow a more efficient operation of a WDM optical network carrying multi-rate traffic.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper develops a Markovian jump model to describe the fault occurrence in a manipulator robot of three joints. This model includes the changes of operation points and the probability that a fault occurs in an actuator. After a fault, the robot works as a manipulator with free joints. Based on the developed model, a comparative study among three Markovian controllers, H(2), H(infinity), and mixed H(2)/H(infinity) is presented, applied in an actual manipulator robot subject to one and two consecutive faults.
Resumo:
In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fatigue and crack propagation are phenomena affected by high uncertainties, where deterministic methods fail to predict accurately the structural life. The present work aims at coupling reliability analysis with boundary element method. The latter has been recognized as an accurate and efficient numerical technique to deal with mixed mode propagation, which is very interesting for reliability analysis. The coupled procedure allows us to consider uncertainties during the crack growth process. In addition, it computes the probability of fatigue failure for complex structural geometry and loading. Two coupling procedures are considered: direct coupling of reliability and mechanical solvers and indirect coupling by the response surface method. Numerical applications show the performance of the proposed models in lifetime assessment under uncertainties, where the direct method has shown faster convergence than response surface method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the time-variant reliability analysis of structures with random resistance or random system parameters. It deals with the problem of a random load process crossing a random barrier level. The implications of approximating the arrival rate of the first overload by an ensemble-crossing rate are studied. The error involved in this so-called ""ensemble-crossing rate"" approximation is described in terms of load process and barrier distribution parameters, and in terms of the number of load cycles. Existing results are reviewed, and significant improvements involving load process bandwidth, mean-crossing frequency and time are presented. The paper shows that the ensemble-crossing rate approximation can be accurate enough for problems where load process variance is large in comparison to barrier variance, but especially when the number of load cycles is small. This includes important practical applications like random vibration due to impact loadings and earthquake loading. Two application examples are presented, one involving earthquake loading and one involving a frame structure subject to wind and snow loadings. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A large number of initiatives in cities in Brazil - including slum clearance and upgrading - have been undertaken over the years in an effort to ameliorate the problems arising from informal occupation; unfortunately, however, little is known about the related performance outcomes. Careful appraisal of the results of such initiatives is thus called for, covering evaluations of dwellers` perceptions of the upgraded environments. Among the available evaluation methods, post-occupancy evaluation (POE) is commonly employed, although it fails adequately to reflect prevailing subjective concepts of quality. The present paper contains the partial findings of a research exercise aimed at developing an original method, using fuzzy logic, for urban environmental quality evaluation in informally occupied areas on the basis of combining quantitative indicators and dweller perception. It combines POE with fuzzy logic in order to develop tools that can better model the uncertain information that emerges from that kind of study. This paper aims to introduce an uncertainty measure used in order to identify the strengths and weaknesses of slum upgrading projects. The results show that it is possible to quantify certainty degrees in the findings and to define if additional information is needed.