985 resultados para Subinertial frequencies
Resumo:
The intestinal microbiota, a barrier to the establishment of pathogenic bacteria, is also an important reservoir of opportunistic pathogens. It plays a key role in the process of resistance-genes dissemination, commonly carried by specialized genetic elements, like plasmids, phages, and conjugative transposons. We obtained from strains of enterobacteria, isolated from faeces of newborns in a university hospital nursery, indication of phenothypical gentamicin resistance amplification (frequencies of 10-3 to 10-5, compatible with transposition frequencies). Southern blotting assays showed strong hybridization signals for both plasmidial and chromossomal regions in DNA extracted from variants selected at high gentamicin concentrations, using as a probe a labeled cloned insert containing aminoglycoside modifying enzyme (AME) gene sequence originated from a plasmid of a Klebsiella pneumoniae strain previously isolated in the same hospital. Further, we found indications of inactivation to other resistance genes in variants selected under similar conditions, as well as, indications of co-amplification of other AME markers (amikacin). Since the intestinal environment is a scenario of selective processes due to the therapeutic and prophylactic use of antimicrobial agents, the processes of amplification of low level antimicrobial resistance (not usually detected or sought by common methods used for antibiotic resistance surveillance) might compromise the effectiveness of antibiotic chemotherapy.
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.
Resumo:
Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.
Resumo:
Repeated exposure to human immunodeficiency virus (HIV) does not always result in seroconversion. Modifications in coreceptors for HIV entrance to target cells are one of the factors that block the infection. We studied the frequency of Delta-32 mutation in ccr5 gene in Medellin, Colombia. Two hundred and eighteen individuals distributed in three different groups were analyzed for Delta-32 mutation in ccr5 gene by polymerase chain reaction (PCR): 29 HIV seropositive (SP), 39 exposed seronegative (ESN) and 150 individuals as a general population sample (GPS). The frequency of the Delta-32 mutant allele was 3.8% for ESN, 2.7% for GPS and 1.7% for SP. Only one homozygous mutant genotype (Delta-32/Delta-32) was found among the ESN (2.6%). The heterozygous genotype (ccr5/Delta-32) was found in eight GPS (5.3%), in one SP (3.4%) and in one ESN (2.6%). The differences in the allelic and genotypic frequencies among the three groups were not statistically significant. A comparison between the expected and the observed genotypic frequencies showed that these frequencies were significantly different for the ESN group, which indirectly suggests a protective effect of the mutant genotype (Delta-32/Delta-32). Since this mutant genotype explained the resistance of infection in only one of our ESN persons, different mechanisms of protection must be playing a more important role in this population.
Resumo:
The nuclear phenotypes of Malpighian tubule epithelial cells of male nymphs of the blood-sucking insect, Panstrongylus megistus, subjected to short- and long-duration heat shocks at 40ºC were analyzed immediately after the shock and 10 and 30 days later. Normal nuclei with a usual heterochromatic body as well as phenotypes indicative of survival (unravelled heterochromatin, giants) and death (apoptosis, necrosis) responses were observed in control and treated specimens. However, all nuclear phenotypes, except the normal ones, were more frequent in shocked specimens. Similarly altered phenotypes have also been reported in Triatoma infestans following heat shock, although at different frequencies. The frequency of the various nuclear phenotypes observed in this study suggests that the forms of cell survival observed were not sufficient or efficient enough to protect all of the Malpighian tubule cells from the deleterious effects of stress. In agreement with studies on P. megistus survival following heat shock, only long-duration shock produced strongly deleterious effects.
Resumo:
Recently a new measure of the cooperative behavior of simultaneous time series was introduced (Carmeli et al. NeuroImage 2005). This measure called S-estimator is defined from the embedding dimension in a state space. S-estimator quantifies the amount of synchronization within a data set by comparing the actual dimensionality of the set with the expected full dimensionality of the asynchronous set. It has the advantage of being a multivariate measure over traditionally used in systems neuroscience bivariate measures of synchronization. Multivariate measures of synchronization are of particular interest for applications in the field of modern multichannel EEG research, since they easily allow mapping of local and/or regional synchronization and are compatible with other imaging techniques. We applied Sestimator to the analysis of EEG synchronization in schizophrenia patients vs. matched controls. The whole-head mapping with S-estimator revealed a specific pattern of local synchronization in schizophrenia patients. The differences in the landscape of synchronization included decreased local synchronization in the territories over occipital and midline areas and increased synchronization over temporal areas. In frontal areas, the S-estimator revealed a tendency for an asymmetry: decreased S-values over the left hemisphere were adjacent to increased values over the right hemisphere. Separate calculations showed reproducibility of this pattern across the main EEG frequency bands. The maintenance of the same synchronization landscape across EEG frequencies probably implies the structural changes in the cortical circuitry of schizophrenia patients. These changes are regionally specific and suggest that schizophrenia is a misconnectivity rather than hypo- or hyper-connectivity disorder.
Resumo:
An examination of the impact in the US and EU markets of two major innovations in the provision of air services on thin routes - regional jet technology and the low-cost business model - reveals significant differences. In the US, regional airlines monopolize a high proportion of thin routes, whereas low-cost carriers are dominant on these routes in Europe. Our results have different implications for business and leisure travelers, given that regional services provide a higher frequency of flights (at the expense of higher fares), while low-cost services offer lower fares (at the expense of lower flight frequencies). Keywords: air transportation; regional jet technology; low-cost business model; thin markets. JEL Classification Numbers: L13; L2; L93.
Resumo:
ICEclc is a mobile genetic element found in two copies on the chromosome of the bacterium Pseudomonas knackmussii B13. ICEclc harbors genes encoding metabolic pathways for the degradation of chlorocatechols (CLC) and 2-aminophenol (2AP). At low frequencies, ICEclc excises from the chromosome, closes into a circular DNA molecule which can transfer to another bacterium via conjugation. Once in the recipient cell, ICEclc can reintegrate into the chromosome by site-specific recombination. This thesis aimed at identifying the regulatory network underlying the decisions for ICEclc horizontal transfer (HGT). The first chapter is an introduction on integrative and conjugative elements (ICEs) more in general, of which ICEclc is one example. In particular I emphasized the current knowledge of regulation and conjugation machineries of the different classes of ICE. In the second chapter, I describe a transcriptional analysis using microarrays and other experiments to understand expression of ICEclc in exponential and stationary phase. By overlaying transcriptomic profiles with Northern hybridizations and RT- PCR data, we established a transcription map for the entire core region of ICEclc, a region assumed to encode the ICE conjugation process. We also demonstrated how transcription of the ICEclc core is maximal in stationary phase, which correlates to expression of reporter genes fused to key ICEclc promoters. In the third chapter, I present a transcriptome analysis of ICEclc in a variety of different host species, in order to explore whether there are species-specific differences. In the fourth chapter, I focus on the role of a curious ICEclc-encoded TetR-type transcriptional repressor. We find that this gene, which we name mfsR, not only controls its own expression but that of a set of genes for a putative multi-drug efflux pump (mfsABC) as well. By using a combination of biochemical and molecular biology techniques, I could show that MfsR specifically binds to operator boxes in two ICEclc promoters (PmfsR and PmfsA), inhibiting the transcription of both the mfsR and mfsABC-orf38184 operons. Although we could not detect a clear phenotype of an mfsABC deletion, we discuss the implications of pump gene reorganizations in ICEclc and close relatives. In the fifth chapter, we find that mfsR not only controls its own expression and that of the mfsABC operon, but is also indirectly controlling ICEclc transfer. Using gene deletions, microarrays, transfer assays and microscopy-based reporter fusions, we demonstrate that mfsR actually controls a small operon of three regulatory genes. The last gene of this mfsR operon, orf17162, encodes a LysR-type activator that when deleted strongly impairs ICEclc transfer. Interestingly, deletion of mfsR leads to transfer competence in almost all cells, thereby overruling the bistability process in the wild-type. In the final sixth chapter, I discuss the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
We analyzed the respiratory syncytial virus (RSV) groups and their epidemiological pattern that were detected over the course of seven years in southern Brazil. The two RSV groups co-circulated each year, but frequencies of groups A and B varied both between and within yearly outbreaks. In 1991, group A predominated over group B (p=0.0016). RSV outbreaks analyzed showed a temperature-dependent pattern and no association with rainfall, similarly to other countries from southern South America. Knowledge of the variants is important in terms of both diagnosis and definition of a vaccine composition.
Resumo:
INTRODUCTION: Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles. METHODS: Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated. RESULTS: For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50-60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions. CONCLUSIONS: In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.
Resumo:
Un estudi observacional de pacients amb LES, atesos al University College de London Hospital entre 1976 i 2005, es va dur a terme per revisar les diferències entre homes i dones amb lupus pel que fa a les característiques clíniques, serologia i resultats. 439 dones i 45 homes van ser identificats. L'edat mitjana al diagnòstic va ser de 29,3 anys (12,6), sense diferències significatives entre homes i dones. El sexe femení es va associar significativament amb la presència d'úlceres orals i Ig M ACA. No hi va haver diferències significatives en la comparació de les altres variables. Durant aquest període de seguiment de trenta anys, relativament poques diferències han sorgit al comparar les freqüències de les característiques clíniques i serològiques en homes y dones amb lupus.
Resumo:
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Resumo:
The electromagnetic radiation at a terahertz frequencies (from 0.1 THz to 10 THz) is situated in the frequency band comprised between the optical band and the radio band. The interest of the scientific community in this frequency band has grown up due to its large capabilities to develop innovative imaging systems. The terahertz waves are able to generate extremely short pulses that achieve good spatial resolution, good penetration capabilities and allow to identify microscopic structures using spectral analysis. The work carried out during the period of the grant has been based on the developement of system working at the aforementioned frequency band. The main system is based on a total power radiometer working at 0.1 THz to perform security imaging. Moreover, the development of this system has been useful to gain knowledge in the behavior of the component systems at this frequency band. Moreover, a vectorial network analyzer has been used to characterize materials and perform active raster imaging. A materials measurement system has been designed and used to measure material properties as permittivity, losses and water concentration. Finally, the design of a terahertz time-domain spectrometer (THz-TDS) system has been started. This system will allow to perform tomographic measurement with very high penetration resolutions while allowing the spectral characterization of the sample material. The application range of this kind of system is very wide: from the identification of cancerous tissues of a skin to the characterization of the thickness of a painted surface of a car.