993 resultados para Sub-networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a theoretical approach to percolation in random clustered networks. We find that, although clustering in scale-free networks can strongly affect some percolation properties, such as the size and the resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide variety of real scale-free networks which shows a high level of transitivity. Our findings are in good agreement with numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two¿and not just one¿vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formalism and the metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No study to date has focused specifically on the reasons for and against disclosure of HIV-positive status among sub-Saharan migrant women. Thirty HIV-positive women from 11 sub-Saharan countries living in French-speaking Switzerland participated in semi-structured individual interviews. The reasons women reported for disclosure or nondisclosure of their HIV serostatus were classified into three categories: social, medical, and ethical. The women identified the stigma associated with HIV as a major social reason for nondisclosure. However, this study identifies new trends related to disclosure for medical and ethical reasons. Being undetectable played an important role in the life of sub-Saharan migrant women, and analysis revealed their medical reasons for both disclosure and nondisclosure. Disclosure to new sexual partners occurred when women had a more positive perception about HIV and when they believed themselves to be in a long-term relationship. Women reported nondisclosure to family members when they did not need help outside the support provided by the medical and social fields. The results on ethical reasons suggested that challenging stigma was a reason for disclosure. Since the women' perceptions on HIV changed when they came to see it as a chronic disease, disclosure occurred in an attempt to normalize life with HIV in their communities in migration and to challenge racism and discrimination. Our findings can help health providers better understand the communication needs of sub-Saharan migrant women with respect to HIV/AIDS and sexuality and offer them adequate disclosure advice that takes into account migration and gender issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a statistical theory to characterize correlations in weighted networks. We define the appropriate metrics quantifying correlations and show that strictly uncorrelated weighted networks do not exist due to the presence of structural constraints. We also introduce an algorithm for generating maximally random weighted networks with arbitrary P(k,s) to be used as null models. The application of our measures to real networks reveals the importance of weights in a correct understanding and modeling of these heterogeneous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic properties of Fe nanodots are simulated using a scaling technique and Monte Carlo method, in good agreement with experimental results. For the 20-nm-thick dots with diameters larger than 60¿nm, the magnetization reversal via vortex state is observed. The role of magnetic interaction between dots in arrays in the reversal process is studied as a function of nanometric center-to-center distance. When this distance is more than twice the dot diameter, the interaction can be neglected and the magnetic properties of the entire array are determined by the magnetic configuration of the individual dots. The effect of crystalline anisotropy on the vortex state is investigated. For arrays of noninteracting dots, the anisotropy strongly affects the vortex nucleation field and coercivity, and only slightly affects the vortex annihilation field