978 resultados para Stuart, Elisabeth, 1596-1662.
Resumo:
The Australasian Nutrition Care Day Survey (ANCDS) reported two-in-five patients in Australian and New Zealand hospitals consume ≤50% of the offered food. The ANCDS found a significant association between poor food intake and increased in-hospital mortality after controlling for confounders (nutritional status, age, disease type and severity)1. Evidence for the effectiveness of medical nutrition therapy (MNT) in hospital patients eating poorly is lacking. An exploratory study was conducted in respiratory, neurology and orthopaedic wards of an Australian hospital. At baseline, 24-hour food intake (0%, 25%, 50%, 75%, 100% of offered meals) was evaluated for patients hospitalised for ≥2 days and not under dietetic review. Patients consuming ≤50% of offered meals due to nutrition-impact symptoms were referred to ward dietitians for MNT with food intake re-evaluated on day-7. 184 patients were observed over four weeks. Sixty-two patients (34%) consumed ≤50% of the offered meals. Simple interventions (feeding/menu assistance, diet texture modifications) improved intake to ≥75% in 30 patients who did not require further MNT. Of the 32 patients referred for MNT, baseline and day-7 data were available for 20 patients (68±17years, 65% females, BMI: 22±5kg/m2, median energy, protein intake: 2250kJ, 25g respectively). On day-7, 17 participants (85%) demonstrated significantly higher consumption (4300kJ, 53g; p<0.01). Three participants demonstrated no improvement due to ongoing nutrition-impact symptoms. “Percentage food intake” was a quick tool to identify patients in whom simple interventions could enhance intake. MNT was associated with improved dietary intake in hospital patients. Further research is needed to establish a causal relationship.
Resumo:
Migraine is classified by the World Health Organization (WHO) as being one of the top 20 most debilitating diseases. According to the neurovascular hypothesis, neuroinflammation may promote the activation and sensitisation of meningeal nociceptors, inducing the persistent throbbing headache characterized in migraine. The tumor necrosis factor (TNF) gene cluster, made up of TNFα, lymphotoxin α (LTA), and lymphotoxin β (LTB), has been implicated to influence the intensity and duration of local inflammation. It is thought that sterile inflammation mediated by LTA, LTB, and TNFα contributes to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Previous studies have investigated variants within the TNF gene cluster region in relation to migraine susceptibility, with largely conflicting results. The aim of this study was to expand on previous research and utilize a large case-control cohort and range of variants within the TNF gene cluster to investigate the role of the TNF gene cluster in migraine. Nine single nucleotide polymorphisms (SNPs) were selected for investigation as follows: rs1800683, rs2229094, rs2009658, rs2071590, rs2239704, rs909253, rs1800630, rs1800629, and rs3093664. No significant association with migraine susceptibility was found for any of the SNPs tested, with further testing according to migraine subtype and gender also showing no association for disease risk. Haplotype analysis showed that none of the tested haplotypes were significantly associated with migraine.
Resumo:
In this paper, we describe a method to represent and discover adversarial group behavior in a continuous domain. In comparison to other types of behavior, adversarial behavior is heavily structured as the location of a player (or agent) is dependent both on their teammates and adversaries, in addition to the tactics or strategies of the team. We present a method which can exploit this relationship through the use of a spatiotemporal basis model. As players constantly change roles during a match, we show that employing a "role-based" representation instead of one based on player "identity" can best exploit the playing structure. As vision-based systems currently do not provide perfect detection/tracking (e.g. missed or false detections), we show that our compact representation can effectively "denoise" erroneous detections as well as enabe temporal analysis, which was previously prohibitive due to the dimensionality of the signal. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labelled data.
Resumo:
Results of recent studies suggest that circulating levels of vitamin D may play an important role in cancer-specific outcomes. The present systematic review was undertaken to determine the prevalence of vitamin D deficiency (<25 nmol/L) and insufficiency (25-50 nmol/L) in cancer patients and to evaluate the association between circulating calcidiol (the indicator of vitamin D status) and clinical outcomes. A systematic search of original, peer-reviewed studies on calcidiol at cancer diagnosis, and throughout treatment and survival, was conducted yielding 4,706 studies. A total of 37 studies met the inclusion criteria for this review. Reported mean blood calcidiol levels ranged from 24.7 to 87.4 nmol/L, with up to 31% of patients identified as deficient and 67% as insufficient. The efficacy of cholecalciferol supplementation for raising the concentration of circulating calcidiol is unclear; standard supplement regimens of <1,000 IU D3 /day may not be sufficient to maintain adequate concentrations or prevent decreasing calcidiol. Dose-response studies linking vitamin D status to musculoskeletal and survival outcomes in cancer patients are lacking.
Resumo:
Background and aims The Australasian Nutrition Care Day Survey (ANCDS) reported two-in-five patients consume ≤50% of the offered food in Australian and New Zealand hospitals. After controlling for confounders (nutritional status, age, disease type and severity), the ANCDS also established an independent association between poor food intake and increased in-hospital mortality. This study aimed to evaluate if medical nutrition therapy (MNT) could improve dietary intake in hospital patients eating poorly. Methods An exploratory pilot study was conducted in the respiratory, neurology and orthopaedic wards of an Australian hospital. At baseline, percentage food intake (0%, 25%, 50%, 75%, and 100%) was evaluated for each main meal and snack for a 24-hour period in patients hospitalised for ≥2 days and not under dietetic review. Patients consuming ≤50% of offered meals due to nutrition-impact symptoms were referred to ward dietitians for MNT. Food intake was re-evaluated on the seventh day following recruitment (post-MNT). Results 184 patients were observed over four weeks; 32 patients were referred for MNT. Although baseline and post-MNT data for 20 participants (68±17years, 65% females) indicated a significant increase in median energy and protein intake post-MNT (3600kJ/day, 40g/day) versus baseline (2250kJ/day, 25g/day) (p<0.05), the increased intake met only 50% of dietary requirements. Persistent nutrition impact symptoms affected intake. Conclusion In this pilot study whilst dietary intake improved, it remained inadequate to meet participants’ estimated requirements due to ongoing nutrition-impact symptoms. Appropriate medical management and early enteral feeding could be a possible solution for such patients.
Resumo:
The purpose of this study is to identify the extent to which NFP organisations disclose information on volunteer contributions of services. Design/methodology/approach – The study relies on information disclosed in the websites of NFP organisations. Findings - We find that disclosure was more prevalent on NFP websites compared to digital annual report disclosures. We find that more NFPs provided disclosure on the activities of their volunteers than other items pertaining to volunteers and the quantification and valuation of volunteer contributions were the least likely to be disclosed. Importantly, the findings illustrate an accountability deficiency in the comprehensiveness of disclosure which results in an under-representation of the contribution volunteers provide to organisational sustainability and impact on mission fulfilment. Research limitations/implications – The convenience sample size restricts further interrogation to tease out organisational characteristics that may influence current disclosure practices. Practical implications - The findings contribute to international debate over the inclusion of volunteer contributions in the assessment of a NFP’s accountability over its resources and ultimately the enhancement of its sustainability.
Resumo:
Population ageing is one of the major challenges of the 21st century and societies need to optimize opportunities for active ageing. This thesis explored how the built environment impacts the mobility and participation within the community. A combination of person-based GPS tracking and in-depth interviews was used to collect data on transportation use and engagement in activities of older people living within Brisbane. It showed that the built environment has a strong impact on mobility. To enable healthy and active ageing modern communities need to overcome car dependency and provide mobility options that are tailored towards older people’s needs.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods: Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [ 15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (?19%, P<0.05) with a trend towards being greater than INT (?9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect90%CI; 0.590.87) and moderate (0.800.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.421.00) for INT vs. PULSE. Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (?20g) at regular intervals (?3h) throughout the day.
Resumo:
PURPOSE We have previously shown that the aminoacidemia caused by the consumption of a rapidly digested protein after resistance exercise enhances muscle protein synthesis (MPS) more than the amino acid (AA) profile associated with a slowly digested protein. Here, we investigated whether differential feeding patterns of a whey protein mixture commencing before exercise affect postexercise intracellular signaling and MPS. METHODS Twelve resistance-trained males performed leg resistance exercise 45 min after commencing each of three volume-matched nutrition protocols: placebo (PLAC, artificially sweetened water), BOLUS (25 g of whey protein + 5 g of leucine dissolved in artificially sweetened water; 1× 500 mL), or PULSE (15× 33-mL aliquots of BOLUS drink every 15 min). RESULTS The preexercise rise in plasma AA concentration with PULSE was attenuated compared with BOLUS (P < 0.05); this effect was reversed after exercise, with two-fold greater leucine concentrations in PULSE compared with BOLUS (P < 0.05). One-hour postexercise, phosphorylation of p70 S6K and rpS6 was increased above baseline with BOLUS and PULSE, but not PLAC (P < 0.05); furthermore, PULSE > BOLUS (P < 0.05). MPS throughout 5 h of recovery was higher with protein ingestion compared with PLAC (0.037 ± 0.007), with no differences between BOLUS or PULSE (0.085 ± 0.013 vs. 0.095 ± 0.010%•h, respectively, P = 0.56). CONCLUSIONS Manipulation of aminoacidemia before resistance exercise via different patterns of intake of protein altered plasma AA profiles and postexercise intracellular signaling. However, there was no difference in the enhancement of the muscle protein synthetic response after exercise. Protein sources producing a slow AA release, when consumed before resistance exercise in sufficient amounts, are as effective as rapidly digested proteins in promoting postexercise MPS.
Resumo:
We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (VO2peak) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of L-[ring-13C6] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTORSer2448 phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ?4-fold in LOW (P < 0.01) and ?11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.
Resumo:
Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol 112: 1805-1813, 2012. First published March 1, 2012; doi:10.1152/japplphysiol.00170.2012.- We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of L-[ring-13C6]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise (P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1-5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTORSer2448 was elevated to a greater extent in men than women acutely after exercise (P = 0.003), whereas increased phosphorylation of p70S6K1Thr389 was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women (P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery (P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exerciseinduced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
Aim There is a growing population of people with cancer who experience physiological and psychological effects that persist long after treatment is complete. Interventions that enhance survivors’ self-management abilities might help offset these effects. The aim of this pilot study was to develop, implement and evaluate interventions tailored to assist patients to manage post-treatment health issues effectively. Method In this pre-post intervention cohort study, participants were recruited on completion of cancer treatment. Participants recruited preimplementation, who received usual care, comprised the control group. Participants recruited later formed the intervention group. In the intervention group, the Cancer Care Coordinator developed an individualised, structured Cancer Survivor Self-management Care Plan. Participants were interviewed on completion of treatment (baseline) and at three months. Assessments concerned health needs (CaSUN), self-efficacy in adjusting and coping with cancer and health-related quality of life (FACIT-B or FACT-C). The impact of the intervention was determined by independent t-tests of change scores. Results The intervention (n = 32) and control groups (n = 35) were comparable on demographic and clinical characteristics. Sample mean age was 54 + 10 years. Cancer diagnoses were breast (82%) and colorectal (18%). Statistically significant differences (p < 0.05) indicated improvement in the intervention group for: (a) functional well-being, from the FACIT, (Control: M = −0.69, SE = 0.91; Intervention: M = 3.04, SE = 1.13); and (b) self-efficacy in maintaining social relationships, (Control: M = −0.333, SE = 0.33; Intervention: M = 0.621, SE = 0.27). No significant differences were found in health needs, other subscales of quality of life, the extent and number of strategies used in coping and adjusting to cancer and in other domains of self-efficacy. Conclusions While the results should be interpreted with caution, due to the non-randomised nature of the study and the small sample size, they indicate the potential benefits of tailored self-management interventions warrant further investigation in this context.