819 resultados para Strain Partitioning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon uptake and partitioning of two globally abundant diatom species, Thalassiosira weissflogii and Dactyliosolen fragilissimus, was investigated in batch culture experiments under four conditions: ambient (15°C, 400 µatm), high CO2 (15°C, 1000 µatm), high temperature (20°C, 400 µatm), and combined (20°C, 1000 µatm). The experiments were run from exponential growth into the stationary phase (six days after nitrogen depletion), allowing us to track biogeochemical dynamics analogous to bloom situations in the ocean. Elevated CO2 had a fertilizing effect and enhanced uptake of dissolved inorganic carbon (DIC) by about 8% for T. weissflogii and by up to 39% for D. fragilissimus. This was also reflected in higher cell numbers, build-up of particulate and dissolved organic matter, and transparent exopolymer particles. The CO2 effects were most prominent in the stationary phase when nitrogen was depleted and CO2(aq) concentrations were low. This indicates that diatoms in the high CO2 treatments could take up more DIC until CO2 concentrations in seawater became so low that carbon limitation occurs. These results suggest that, contrary to common assumptions, diatoms could be highly sensitive to ongoing changes in oceanic carbonate chemistry, particularly under nutrient limitation. Warming from 15 to 20 °C had a stimulating effect on one species but acted as a stressor on the other species, highlighting the importance of species-specific physiological optima and temperature ranges in the response to ocean warming. Overall, these sensitivities to CO2 and temperature could have profound impacts on diatoms blooms and the biological pump.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR on deposited Pt layers decreases with increasing Pt thickness. In the submonolayer region, however, the ORR activity is superior to that of bulk Pt. Using density functional theory (DFT) calculations, we correlate the observed activity trend to strain, ligand, and ensemble effects. At submonolayer coverage certain atom configurations weaken the binding energies of reaction intermediates due to a ligand and ensemble effect, thus effectively increasing the ORR activity. At higher Pt coverage the activity is governed by a strain effect, which lowers the activity by decreasing the oxidation potential of water. This study is a nice example of how the influence of strain, ligand, and ensemble effects on the ORR can be deconvoluted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters