967 resultados para Steel Fracture
Resumo:
As the production of a new technique that can offer both good formability and high image clarity for texturing metal sheet, laser-textured sheet has attracted the attention of many manufacturers and users. Among the many subjects to be studied, plastic instability behaviour of the laser-textured sheet is one of most important to understand its ability in extending material ductility and to appropriately control this technique. Experimental investigations are carried out in this paper to study the macroscopic behaviour and microstructural mechanism of the laser-textured sheet, and comparison is made with the normal sheet taken from the same coil of metal sheet. It is demonstrated that, the difference in the behaviour of plastic instability obviously shows tendency to delay strain localization and the onset of thickness necking. Shear banding and internal void damage are spread to a much wider region in the sheet being laser-textured. The prestrained microcraters enforced on the surface of the textured sheet act as hardening spots, which are likely to share out deformation and inhibit the increasing rate of voiding, and eventually favouring the ductility of the material used.
Resumo:
This paper summarizes the recent development of dynamic fracture in China. The review covers analytical and numerical results on elastodynamic crack fields in 3D and layered media; experimental and theoretical research on dynamic mechanical properties of rocks and advanced materials; transient effects on ideally plastic crack-tip fields when the inertia forces are not negligible.
Resumo:
A general theory of fracture criteria for mixed dislocation emission and cleavage processes is developed based on Ohr's model. Complicated cases involving mixed-mode loading are considered. Explicit formulae are proposed for the critical condition of crack cleavage propagation after a number of dislocation emissions. The effects of crystal orientation, crack geometry and load phase angle on the apparent critical energy release rates and the total number of the emitted dislocations at the initiation of cleavage are analysed in detail. In order to evaluate the effects of nonlinear interaction between the slip displacement and the normal separation, an analysis of fracture criteria for combined dislocation emission and cleavage is presented on the basis of the Peierls framework. The calculation clearly shows that the nonlinear theory gives slightly high values of the critical apparent energy release rate G(c) for the same load phase angle. The total number N of the emitted dislocations at the onset of cleavage given by nonlinear theory is larger than that of linear theory.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre reinforced phenolplast. The difference recurrence Formulae and boundary condition difference extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared with that published previously. GSDA is proved effective and reliable. Copyright (C) 1996 Elsevier Science Ltd.