966 resultados para Spectral and nonlinear optical characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis presents results obtained from both numerical simulation and laboratory experimentation (both of which were carried out by the author). When data is propagated along an optical transmission line some timing irregularities can occur such as timing jitter and phase wander. Traditionally these timing problems would have been corrected by converting the optical signal into the electrical domain and then compensating for the timing irregularity before converting the signal back into the optical domain. However, this thesis posses a potential solution to the problem by remaining completely in the optical domain, eliminating the need for electronics. This is desirable as not only does optical processing reduce the latency effect that their electronic counterpart have, it also holds the possibility of an increase in overall speed. A scheme was proposed which utilises the principle of wavelength conversion to dynamically convert timing irregularities (timing jitter and phase wander) into a change in wavelength (this occurs on a bit-by-bit level and so timing jitter and phase wander can be compensated for simultaneously). This was achieved by optically sampling a linearly chirped, locally generated clock source (the sampling function was achieved using a nonlinear optical loop mirror). The data, now with each bit or code word having a unique wavelength, is then propagated through a dispersion compensation module. The dispersion compensation effectively re-aligns the data in time and so thus, the timing irregularities are removed. The principle of operation was tested using computer simulation before being re-tested in a laboratory environment. A second stage was added to the device to create 3R regeneration. The second stage is used to simply convert the timing suppressed data back into a single wavelength. By controlling the relative timing displacement between stage one and stage two, the wavelength that is finally produced can be controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented. © 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we numerically demonstrate that the use of inline nonlinear optical loop mirrors in strongly dispersion-managed transmission systems dominated by pulse distortion and amplitude noise can achieve all-optical passive 2R regeneration of a 40-Gb/s return-to-zero data stream. We define the tolerance limits of this result to the parameters of the input pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a 2R regeneration scheme based on a nonlinear optical loop mirror (NOLM) and optical filtering. We numerically investigate wavelength-division multiplexing (WDM) operation at a channel bit rate of 40 Gbit/s. In distinction to our previous work, we focus here on the regenerative characteristics and signal quality after a single transmission section, whose length is varied from 200 to 1000 km. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of all-optical passive quasi-regeneration in transoceanic 40 Gbit/s return-to-zero transmission systems with strong dispersion management was described. The use of in-line nonlinear optical loop mirrors (NOLM) by the method was demonstrated. The quasi-regeneration of signals performed by NOLMs was found to improve the systems's performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-doped fibre amplifiers (EDFA’s) are a key technology for the design of all optical communication systems and networks. The superiority of EDFAs lies in their negligible intermodulation distortion across high speed multichannel signals, low intrinsic losses, slow gain dynamics, and gain in a wide range of optical wavelengths. Due to long lifetime in excited states, EDFAs do not oppose the effect of cross-gain saturation. The time characteristics of the gain saturation and recovery effects are between a few hundred microseconds and 10 milliseconds. However, in wavelength division multiplexed (WDM) optical networks with EDFAs, the number of channels traversing an EDFA can change due to the faulty link of the network or the system reconfiguration. It has been found that, due to the variation in channel number in the EDFAs chain, the output system powers of surviving channels can change in a very short time. Thus, the power transient is one of the problems deteriorating system performance. In this thesis, the transient phenomenon in wavelength routed WDM optical networks with EDFA chains was investigated. The task was performed using different input signal powers for circuit switched networks. A simulator for the EDFA gain dynamicmodel was developed to compute the magnitude and speed of the power transients in the non-self-saturated EDFA both single and chained. The dynamic model of the self-saturated EDFAs chain and its simulator were also developed to compute the magnitude and speed of the power transients and the Optical signal-to-noise ratio (OSNR). We found that the OSNR transient magnitude and speed are a function of both the output power transient and the number of EDFAs in the chain. The OSNR value predicts the level of the quality of service in the related network. It was found that the power transients for both self-saturated and non-self-saturated EDFAs are close in magnitude in the case of gain saturated EDFAs networks. Moreover, the cross-gain saturation also degrades the performance of the packet switching networks due to varying traffic characteristics. The magnitude and the speed of output power transients increase along the EDFAs chain. An investigation was done on the asynchronous transfer mode (ATM) or the WDM Internet protocol (WDM-IP) traffic networks using different traffic patterns based on the Pareto and Poisson distribution. The simulator is used to examine the amount and speed of the power transients in Pareto and Poisson distributed traffic at different bit rates, with specific focus on 2.5 Gb/s. It was found from numerical and statistical analysis that the power swing increases if the time interval of theburst-ON/burst-OFF is long in the packet bursts. This is because the gain dynamics is fast during strong signal pulse or with long duration pulses, which is due to the stimulatedemission avalanche depletion of the excited ions. Thus, an increase in output power levelcould lead to error burst which affects the system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of a sharp switching characteristic is experimentally demonstrated by concatenation of nonlinear optical loop mirrors. A novel configuration has been used which results in three terminal operation of the device. This device can be used as a logic gate and for pulse shaping to produce square pulses. © 1993 Taylor and Francis Ltd.