884 resultados para Solution of mathematical problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical procedure, based on the parametric differentiation and implicit finite difference scheme, has been developed for a class of problems in the boundary-layer theory for saddle-point regions. Here, the results are presented for the case of a three-dimensional stagnation-point flow with massive blowing. The method compares very well with other methods for particular cases (zero or small mass blowing). Results emphasize that the present numerical procedure is well suited for the solution of saddle-point flows with massive blowing, which could not be solved by other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, it is shown that the zero series eigenfunctions of Reissner plate cracks/notches fracture problems are analogous to the eigenfunctions of anti-plane and in-plane. The singularity in the double series expression of plate problems only arises in zero series parts. In view of the relationship with eigen-values of anti-plane and in-plane problem, the solution of eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problem. As a result the corresponding eigen-values or the corresponding eigen-value solving programs with respect to the anti-plane and in-plane problems can be employed and many aggressive SIF computed methods of plane problems can be employed in the plate. Based on those, the approximate relationship of SIFs between the plate and the plane fracture problems is figured out, and the effect relationship of the plate thickness on SIF is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2009/28/EC Directive requires Member States of the European Union to adopt a National Action Plan for Renewable Energy. In this context, the Basque Energy Board, EVE, is committed to research activities such as the Mutriku Oscillating Water Column plant, OWC. This is an experimental facility whose concept consists of a turbine located in a pneumatic energy collection chamber and a doubly fed induction generator that converts energy extracted by the turbine into a form that can be returned to the network. The turbo-generator control requires a precise knowledge of system parameters and of the rotor angular velocity in particular. Thus, to remove the rotor speed sensor implies a simplification of the hardware that is always convenient in rough working conditions. In this particular case, a Luenberger based observer is considered and the effectiveness of the proposed control is shown by numerical simulations. Comparing these results with those obtained using a traditional speed sensor, it is shown that the proposed solution provides better performance since it increases power extraction in the sense that it allows a more reliable and robust performance of the plant, which is even more relevant in a hostile environment as the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

xlix, 121 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.