1000 resultados para Soil formation
Resumo:
Generation of fluids during metamorphism can significantly influence the fluid overpressure, and thus the fluid flow in metamorphic terrains. There is currently a large focus on developing numerical reactive transport models, and with it follows the need for analytical solutions to ensure correct numerical implementation. In this study, we derive both analytical and numerical solutions to reaction-induced fluid overpressure, coupled to temperature and fluid flow out of the reacting front. All equations are derived from basic principles of conservation of mass, energy and momentum. We focus on contact metamorphism, where devolatilization reactions are particularly important owing to high thermal fluxes allowing large volumes of fluids to be rapidly generated. The analytical solutions reveal three key factors involved in the pressure build-up: (i) The efficiency of the devolatilizing reaction front (pressure build-up) relative to fluid flow (pressure relaxation), (ii) the reaction temperature relative to the available heat in the system and (iii) the feedback of overpressure on the reaction temperature as a function of the Clapeyron slope. Finally, we apply the model to two geological case scenarios. In the first case, we investigate the influence of fluid overpressure on the movement of the reaction front and show that it can slow down significantly and may even be terminated owing to increased effective reaction temperature. In the second case, the model is applied to constrain the conditions for fracturing and inferred breccia pipe formation in organic-rich shales owing to methane generation in the contact aureole.
Resumo:
Résumé: La formation des atélectasies durant l'induction de l'anesthésie générale est plus importante chez le patient obèse morbide. Nous avons démontré dans des travaux de recherche antérieurs que l'utilisation de la PEEP (Pression Positive en Fin d'Expiration) durant l'induction de l'anesthésie prévient la formation d'atélectasies chez des patients non obèses. Par conséquent, nous voulions étudier l'efficacité de la pression positive en fin d'expiration chez le patient obèse morbide dans la prévention de la formation d'atélectasies. Nous avons fait une étude de 23 patients obèses morbides (BMI > 35 kg / m2) dans 2 groupes. Dans le groupe utilisant la pression positive en fin d'expiration, les patients respiraient 100% d'oxygène pendant 5 minutes par l'intermédiaire d'un masque facial type CPAP avec une pression de 10 cm H20. Après l'induction de l'anesthésie, nous avons ventilé les patients au masque facial avec une PEEP de 10 cm H20. Dans le groupe de contrôle, nous avons procédé au même type d'induction sans utiliser la pression positive en fin d'expiration. La surface de poumon atélectatique a été évaluée par tomographie (CT scann). L'étude des échanges gazeux se faisait à 2 reprises, à partir de gazométries réalisées juste avant l'induction de l'anesthésie puis juste après l'intubation. Après l'induction de l'anesthésie et l'intubation, les patients du groupe de contrôle présentaient une quantité d'atélectasies plus importante que les patients du groupe où la PEEP avait été utilisée (10.4% + 4.8% dans le groupe de contrôle versus 1.3% dans le groupe utilisant la pression positive en fin d'expiration p < 0.001). Après l'intubation, en présence d'une fraction inspirée en oxygène à 100%, la Pa02 était significativement supérieure dans le groupe ayant utilisé la pression positive en fin d'expiration en comparaison avec le groupe de contrôle (respectivement 457 ± 130 mmHg versus 315 ± 100 mmHg). Nous avons conclu que chez le patient obèse morbide, le recours à la pression positive en fin d'expiration lors de l'induction de l'anesthésie permet de prévenir largement la formation d'atélectasies et s'accompagne d'une meilleure oxygénation. Abstract: Atelectasis caused by general anesthesia is increased in morbidly obese patients. We have shown that application of positive end-expiratory pressure (PEEP) during the induction of anesthesia prevents atelectasis formation in nonobese patients. We therefore studied the efficacy of PEEP in morbidly obese patients to prevent atelectasis. Twenty-three adult morbidly obese patients (b ody mass index >35 kg/m2) were randomly assigned to one of two groups. In the PEEP group, patients breathed 100% oxygen (5 min) with a continuous positive airway pressure of 10 cm H20 and, after the induction, mechanical ventilation via a face mask with a PEEP of 10 cm H2O. In the control group, the same induction was applied but without continuous positive airway pressure or PEEP. Atelectasis, determined by computed tomography, and blood gas analysis were measured twice: before the induction and directly after intubation. After endotracheal intubation, patients of the control group showed an increase in the amount of atelectasis, which was much larger than in the PEEP group (10.4% -± 4.8% in control group versus 1.7% ± 1.3% in PEEP group; P <0.001). After in.tubation with a fraction of inspired oxygen of 1.0, Pao, was significantly higher in the PEEP group compared with the control group (457 ±- 130 mm Hg versus 315 ± 100 mm Hg, respectively; P = 0.035) We conclude that in morbidly obese patients, atelectasis formation is largely prevented by PEEP applied during the anesthetic induction and is associated with a better oxygenation.
Resumo:
BACKGROUND The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. FINDINGS Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). CONCLUSIONS Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
We analysed the antimicrobial susceptibility, biofilm formation and genotypic profiles of 27 isolates of Staphylococcus haemolyticus obtained from the blood of 19 patients admitted to a hospital in Rio de Janeiro, Brazil. Our analysis revealed a clinical significance of 36.8% and a multi-resistance rate of 92.6% among these isolates. All but one isolate carried the mecA gene. The staphylococcal cassette chromosome mec type I was the most prevalent mec element detected (67%). Nevertheless, the isolates showed clonal diversity based on pulsed-field gel electrophoresis analysis. The ability to form biofilms was detected in 66% of the isolates studied. Surprisingly, no icaAD genes were found among the biofilm-producing isolates.
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
El objetivo de este proyecto ha sido analizar los posibles efectos del biochar obtenido de restos de biomasa de resinosas, de caducifolios y de un lodo de depuradora por tres procedimientos de pirolisis (lenta, rápida y gasificación), sobre un suelo (Haploxerept típico) y una planta de interés agrícola (Hordeum vulgare). Adicionalmente, se han comparado los efectos del biochar con los producidos por la aplicación de los materiales originales, y la interacción del biochar sobre el fertilizante mineral incorporado al suelo. Por último, se ha completado el trabajo con la observación de la influencia del biochar en la formación de micorrizas. Para llevar a cabo este estudio se ha realizado un ensayo en invernadero y diferentes análisis en laboratorio que han permitido el estudio comparativo de la germinación y crecimiento de la cebada, y de diferentes parámetros fisicoquímicos del suelo que podrían explicar la respuesta de las plantas crecidas sobre los distintos tipos de biochar. A partir de la interpretación de los resultados se ha determinado que los diferentes tipos de biochar han provocado un mayor desarrollo de la cebada en comparación con la aplicación de sus respectivas materias primas, o bien se ha observado la desaparición de efectos inhibidores como en el caso de los lodos de depuradora. Por otro lado, ha destacado el biochar obtenido por pirólisis lenta del resto de los biochars puesto que se ha observado menor mineralización de su materia orgánica de los suelos y mayor eficiencia en el desarrollo de las plantas. Por último, el efecto de la enmienda orgánica en forma de biochar sobre el desarrollo de las plantas ha sido menor que el efecto provocado directamente por la fertilización mineral.
Resumo:
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.
Resumo:
Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that alpha(1)-adrenergic receptors (alpha(1)-ARs) may facilitate restenosis after PCI because of alpha(1)-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of alpha(1A)-knockout (alpha(1A)-KO), alpha(1B)-KO, alpha(1D)-KO, alpha(1A)-/alpha(1B)-AR double-KO (alpha(1AB)-KO), and wild-type mice to investigate the functional role of each alpha(1)-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly (P < 0.05) smaller in alpha(1AB)-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both alpha(1A)- and alpha(1B)-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.
Resumo:
PURPOSE: To optimize conditions for photodynamic detection (PDD) and photodynamic therapy (PDT) of bladder carcinoma, urothelial accumulation of protoporphyrin IX (PpIX) and conditions leading to cell photodestruction were studied. MATERIALS AND METHODS: Porcine and human bladder mucosae were superfused with derivatives of 5-aminolevulinic acid (ALA). PpIX accumulation and distribution across the mucosa was studied by microspectrofluorometry. Cell viability and structural integrity were assessed by using vital dyes and microscopy. RESULTS: ALA esters, especially hexyl-ALA, accelerated and regularized urothelial PpIX accumulation and allowed for necrosis upon illumination. CONCLUSIONS: hexyl-ALA used at micromolar concentrations is the most efficient PpIX precursor for PDD and PDT.
Resumo:
The females of the bluemouth rockfish, Helicolenus dactylopterus dactylopterus (DelaRoche, 1809), store sperm within their ovaries for periods of up to 10 months. Twenty six females with standard lengths between 152 and 257 mm and six males with standard lengths between 253 and 209 mm were caught storage crypts with stored spermatozoa and to describe their evolution over the year. After internal fertilization and once sperm reaches the ovary, a crypt forms probably by an epithelial inclusion at the base of the lamellae of one or several spermatozoa groups that are floating freely in the interlamellar space of the ovarian lumen. Stored spermatozoa have a large cytoplasm bag surrounding their heads. This bag could serve as a nutritive reservoir during the long storage period. Many desmosonal and tight junctions between the crypt cells ensure tha male sex cells are protected against the female immune system