960 resultados para Soft magnetic materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present the morphological and magnetic characterization of ferrofluid-impregnated biomimetic scaffolds made of hydroxyapatite and collagen used for bone reconstruction. We describe an innovative and simple impregnation process by which the ferrofluid is firmly adsorbed onto the hydroxyapatite/collagen scaffolds. The process confers sufficient magnetization to attract potential magnetic carriers, which may be used to transport bioactive agents that favour bone regeneration. The crystalline structure of the magnetite contained in the ferrofluid is preserved and its quantity, estimated from the weight gain due to the impregnation process, is consistent with that obtained from energy dispersive X-ray spectroscopy. The magnetization, measured with a superconducting quantum interference device, is uniform throughout the scaffolds, demonstrating the efficiency of the impregnation process. The field emission gun scanning electron microscopy characterization demonstrates that the process does not alter the morphology of the hydroxyapatite/collagen scaffolds, which is essential for the preservation of their bioactivity and consequently for their effectiveness in promoting bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical(1,2) or quantum(3,4) behaviour. Individual atoms, however, are difficult to arrange in regular patterns(1-5). Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment(6,7). Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of Surface lipopolysaccharides (LPS) on the electrophoretic softness and fixed charge density in the ion-penetrable layer of Acidithiobacillus ferrooxidans cells grown in presence of copper or arsenic ions have been discussed, The electrophoretic mobility data were analyzed using the soft-particle electrophoresis theory. Cell surface potentials of all the strains based on soft-particle theory were lower than those estimated using the conventional Smoluchowski theory, Exposure to metal ions increased the Surface electrophoretic softness with decrease in the fixed charge density. Effect of cell surface lipopolysaccharides on the model parameters are investigated and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To quantify the uncertainties of carotid plaque morphology reconstruction based on patient-specific multispectral in vivo magnetic resonance imaging (MRI) and their impacts on the plaque stress analysis. Materials and Methods: In this study, three independent investigators were invited to reconstruct the carotid bifurcation with plaque based on MR images from two subjects to study the geometry reconstruction reproducibility. Finite element stress analyses were performed on the carotid bifurcations, as well as the models with artificially modified plaque geometries to mimic the image segmentation uncertainties, to study the impacts of the uncertainties to the stress prediction. Results: Plaque reconstruction reproducibility was generally high in the study. The uncertainties among interobservers are around one or the subpixel level. It also shows that the predicted stress is relatively less sensitive to the arterial wall segmentation uncertainties, and more affected by the accuracy of lipid region definition. For a model with lipid core region artificially increased by adding one pixel on the lipid region boundary, it will significantly increase the maximum Von Mises Stress in fibrous cap (>100%) compared with the baseline model for all subjects. Conclusion: The current in vivo MRI in the carotid plaque could provide useful and reliable information for plaque morphology. The accuracy of stress analysis based on plaque geometry is subject to MRI quality. The improved resolution/quality in plaque imaging with newly developed MRI protocols would generate more realistic stress predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-two-dimensional oxides of the La,+,Sr,+,Mn04 system, possessing the KZNiF4 structure, show no evidence for ferromagnetic ordering in contrast to the corresponding three-dimensional La,+.Sr,MnO~ perovskites. Instead, there is an increasing tendency toward antiferromagnetic ordering with mcreasmg x m La,+,Sr,,, MnOp. Furthermore, these oxides are relatively high-resistivity materials over the entire compositional range. Substitution of Ba for Sr in La&r,.5Mn04 decreases the ferromagnetic interaction. Increasing the number of perovskite layers in SrO (La,-,Sr,MnO& causes an increase in electrical conductivity as well as ferromagnetic interaction. The oxide becomes a highly conducting ferromagnet when n 2 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for screening bacterial isolates for their potential to inhibit the growth of ruminal methanogenic Archaea was developed using a modification of the soft agar overlay technique, formally used for the isolation of lytic bacteriophages. This method may be used in the specific, hydrogen-rich conditions required for the growth of ruminal methanogenic Archaea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Octahedral Co2+ centers have been connected by mu(3)-OH and mu(2)-OH2 units forming [Co-4] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co-4] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 mu B per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 Tat 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.