990 resultados para Sodium compounds
Resumo:
A novel approach for attaching well-dispersed cobalt nanoparticles homogeneously onto carbon nanotubes via metal organic chemical vapor deposition technique is reported. The obtained Co/CNTs catalysts feature a narrow size distribution of Co particles centering around 7.5 nm, and show high activity and regioselectivity for hydroformylation of 1-octene.
Resumo:
An approach for the separation and identification of components in a traditional Chinese medicine Psoralea corylifolia was developed. Ion-exchange chromatography (IEC) was applied for the fractionation of P corylifolia extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further separated on an ODS column with detection of UV absorbance and atmospheric pressure chemical ionization mass spectrometer (APCI/MS), respectively, and also analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes. Totally more than 188 components in P. corylifolia extract were detected with this integrated approach, and 12 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS. The obtained analytical results not only demonstrated the powerful resolution of integration IEC fractionation with reversed-phase liquid chromatography (RPLC)-APCI/MS and MALDI-TOF/MS for analysis of compounds in a complex sample, but also exhibited the superiority of APCI/MS and MALDI-TOF/MS for identification of low-mass compounds, such as for study of traditional Chinese medicines (TCMs) and metabolome. (c) 2005 Published by Elsevier B.V.
Resumo:
Immobilized liposome chromatography (ILC), the stationary phase of which has been regarded as a mimic biomembranes system was used to separate and analyze compounds interacting with liposome membrane in Danggui Buxue decoction, a combined prescription of traditional Chinese medicines (CPTCMs), and its compositions Radix Astragli and Radix Angelica Sinensis. More than 10 main peaks in the extract of Danggui Buxue decoction were resolved on the ILC column, suggesting that more than 10 components in the prescription have significant retention on ILC column. Ligustilide, astragaloside, TV and formononetin, three main bioactive ingredients in Danggui Buxue decoction, were found to have relatively significant, while ferulic acid, another bioactive ingredient in the prescription, relatively weak retention on ILC column. Effects of the eluent pH and amount of immobilized phosphatidylcholine (PC) on separation of interactional compounds in the extract of Danggui Buxue decoction were also investigated. It was found that these two factors strongly affected the retention of some interactional compounds. In addition, the fractions partitioned with different solvents from water extract of this combined prescription were evaluated with this ILC column system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A hyphenated method for the isolation and identification of components in a traditional Chinese medicine of Honeysuckle was developed. Ion-exchange chromatography (IEC) was chosen for the fractionation of Honeysuckle extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further analyzed by reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer (RPLC-APCI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes, respectively. It can be noted totally more than 117 components were detected by UV detector, APCI/MS and MALDI-TOF/MS in Honeysuckle extract except the, 145 components identified by MALDI-TOF/MS alone with this integrated approach, and 7 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS, respectively. The obtained analytical results not only indicated the approach of integration IEC fractionation with RPLC-APCI/MS and MALDI-TOF/MS is capable of analyzing complex samples, but also exhibited the potential power of the mass spectrometer in detection of low-mass compounds, such as traditional Chinese medicines (TCMs) and complex biological samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Kargl, Florian; Meyer, A., (2004) 'Inelastic neutron scattering on sodium aluminosilicate melts: sodium diffusion and intermediate range order', Chemical Geology 213(1-3) pp.165-172 RAE2008
Resumo:
Jenkins, Tudor; Vaidyanathan, S.; Jones, D.G.; Ellis, J., (2007) 'Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation', Rapid Communications in Mass Spectrometry 21(13) pp.2157-2166 RAE2008
Resumo:
Kargl, Florian; Meyer, A.; Horbach, J.; Kob, W., (2004) 'Channel formation and intermediate range order in sodium silicate melts and glasses', Physical Review Letters 93(2) pp.027801 RAE2008
Resumo:
The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and Nacetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.
Resumo:
Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.
Resumo:
This thesis describes the synthesis and reactivity of a series of α-diazocarbonyl compounds with particular emphasis on the use of copper-bis(oxazoline)-mediated enantioselective C–H insertion reactions leading to enantioenriched cyclopentanone derivatives. Through the use of additives, the enantioselectivity achieved with the copper catalysts for the first time reaches synthetically useful levels (up to 91% ee). Chapter one provides a comprehensive overview of enantioselective C–H insertions with α-diazocarbonyl compounds from the literature. The majority of reports in this section involve rhodium-catalysed systems with limited reports to date of asymmetric C–H insertion reactions in the presence of copper catalysts. Chapter two focuses on the synthesis and C–H insertion reactions of α-diazo-β-keto sulfones leading to α-sulfonyl cyclopentanones as the major product. Detailed investigation of the impact of substrate structure (both the sulfonyl substitutent and the substituent at the site of insertion), the copper source, ligand, counterion, additive and solvent was undertaken to provide an insight into the mechanistic basis for enantiocontrol in the synthetically powerful C–H insertion process and to enable optimisation of enantiocontrol and ligand design. Perhaps the most significant outcome of this work is the enhanced enantioselection achieved through use of additives, substantially improving the synthetic utility of the asymmetric C–H insertion process. In addition to the C–H insertion reaction, mechanistically interesting competing reaction pathways involving hydride transfer are observed. Chapter three reports the extension of the catalyst-additive systems, developed for C–H insertions with α-diazo-β-keto sulfones in chapter two, to C–H insertion in analogous α-diazo-β-keto phosphonate and α-diazo-β-keto ester systems. While similar patterns were seen in terms of ligand effects, the enantiopurities achieved for these reactions were lower than those in the cyclisations with analogous α-diazo-β-keto sulfones. Extension of this methodology to cyclopropanation and oxium ylide formation/[2,3]-sigmatropic rearrangement was also explored. Chapter four contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC analysis and X-ray crystallography are included in the appendix.
Resumo:
This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.
Resumo:
This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.
Resumo:
The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.