904 resultados para Smart Meters
Resumo:
This paper discusses the need to simultaneously monitor voltage unbalance and harmonic distortions in addition to root-mean-square voltage values. An alternative way to obtain the parameters related to voltage unbalance at fundamental frequency as well as voltage harmonic distortions is here proposed, which is based on the representation of instantaneous values at the axes and at the instantaneous Euclidean norm. A new power-quality (PQ) index is then proposed to combine the effects of voltage unbalance and harmonic distortions. This new index is easily implemented into existing electronic power meters. This PQ index is determined from the analysis of temperature rise in induction motor windings, which were tested for long periods of time. This paper also shows that these voltage disturbances, which are harmful to the lifetime expectancy of motors, can be measured by alternative ways in relation to conventional methods. Although this paper deals with induction motors only, the results show the relevance for further studies on other pieces of equipment.
Resumo:
This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.
Resumo:
Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.
Resumo:
Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.
Resumo:
Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
Resumo:
Landscape unit discrimination for pedological surveys by orbital spectral response. The objective of tins study was compare two soil survey methods. The first was performed by methods traditionally used to distinguish landscape units and soil class discrimination. The second was based on soil class distinction through orbital spectral response. In order to establish soil characteristics and their classification, soil samples were collected at two depths in a grid system, with a distance of 500 meters between points. With these samples, physical and chemical analyses were carried out. In the sampling points, the apparent reflectance of the soil, front the orbital image, was determined and, through cluster analysis landscape units were established. In order to evaluate the resemblance reliability between the landscape units established in each method, the Kappa index was used, the value set for the confusion matrix was 0.43, indicating high quality in the comparison, showing that the non-conventional method was as close as the one carried out by photointerpretation.
Resumo:
Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.
Resumo:
The dibenzylbutyrolactolic lignan (-)-cubebin was isolated from dry seeds of Piper cubeba L (Piperaceae). (-)-Cubebin possesses anti-inflammatory, analgesic and antimicrobial activities. Doxorubicin (DXR) is a topoisomerase-interactive agent that may induce single- and double-strand breaks, intercalate into the DNA and generate oxygen free radicals. Here, we examine the mutagenicity and recombinogenicity of different concentrations of (-)-cubebin alone or in combination with DXR using standard (ST) and high bioactivation (HB) crosses of the wing Somatic Mutation And Recombination Test in Drosophila melanogaster. The results from both crosses were rather similar. (-)-Cubebin alone did not induce mutation or recombination. At lower concentrations, (-)-cubebin statistically reduced the frequencies of DXR-induced mutant spots. At higher concentrations, however, (-)-cubebin was found to potentiate the effects of DXR, leading to either an increase in the production of mutant spots or a reduction, due to toxicity. These results suggest that depending on the concentration, (-)-cubebin may interact with the enzymatic system that catalyzes the metabolic detoxification of DXR, inhibiting the activity of mitochondria! complex 1 and thereby scavenging free radicals. Recombination was found to be the major effect of the treatments with DXR alone. The combined treatments reduced DXR mutagenicity but did not affect DXR recombinogenicity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study aims to evaluate the feasibility of using simple techniques - pollen abortion rates, passive diffusive tubes (NO(2)) and trace element accumulation in tree barks - when determining the area of influence of pollution emissions produced in a traffic corridor. Measurements were performed at 0, 60 and 120 meters from a major road with high vehicular traffic, taking advantage of a sharp gradient that exists between the road and a cemetery. NO(2) values and trace elements measured at 0 meters were significantly higher than those measured at more distant points. Al, S. Cl, V. Fe, Cu, and Zn exhibited a higher concentration in tree barks at the vicinity of the traffic corridor. The same pattern was observed for the pollen abortion rates measured at the three different sites. Our data suggests that simple techniques may be applied either to validate dispersion land-based models in an urban settings or, alternatively, to provide better spatial resolution to air pollution exposure when high-resolution pollution monitoring data are not available. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
Background: Plantar fasciitis is the third most frequent injury in runners. Despite its high prevalence, its pathogenesis remains inconclusive. The literature reports overload as the basic mechanism for its development. However, the way that these plantar loads are distributed on the foot surface of runners with plantar fasciitis and the effects of pain on this mechanical factor has not yet been investigated. Therefore, the aim of this study was to evaluate and compare the plantar pressure distributions during running in runners with symptom or history of plantar fasciitis and runners without the disease. Methods: Forty-five recreational runners with plantar fasciitis (30 symptomatic and 15 with previous history of the disease) and 60 runners without plantar fasciitis (control group) were evaluated. Pain was assessed by a visual analogue scale. All runners were evaluated by means of the Pedar system insoles during running forty meters at a speed of 12(5%) km/h, using standard sport footwear. Two-way ANOVAS were employed to investigate the main and interaction effects between groups and plantar areas. Findings: No interaction effects were found for any of the investigated variables: peak pressure (P=0.61), contact area (P=0.38), contact time (P=0.91), and the pressure-time integral (P=0.50). Interpretation: These findings indicated that the patterns of plantar pressure distribution were not affected in recreational runners with plantar fasciitis when compared to control runners. Pain also did not interfere with the dynamic patterns of the plantar pressure distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.
Resumo:
Background Previous studies have examined individual dietary and lifestyle factors in relation to type 2 diabetes, but the combined effects of these factors are largely unknown. Methods We followed 84,941 female nurses from 1980 to 1996; these women were free of diagnosed cardiovascular disease, diabetes, and cancer at base line. Information about their diet and lifestyle was updated periodically. A low-risk group was defined according to a combination of five variables: a body-mass index (the weight in kilograms divided by the square of the height in meters) of less than 25; a diet high in cereal fiber and polyunsaturated fat and low in trans fat and glycemic load (which reflects the effect of diet on the blood glucose level); engagement in moderate-to-vigorous physical activity for at least half an hour per day; no current smoking; and the consumption of an average of at least half a drink of an alcoholic beverage per day. Results During 16 years of follow-up, we documented 3300 new cases of type 2 diabetes. Overweight or obesity was the single most important predictor of diabetes. Lack of exercise, a poor diet, current smoking, and abstinence from alcohol use were all associated with a significantly increased risk of diabetes, even after adjustment for the body-mass index. As compared with the rest of the cohort, women in the low-risk group (3.4 percent of the women) had a relative risk of diabetes of 0.09 (95 percent confidence interval, 0.05 to 0.17). A total of 91 percent of the cases of diabetes in this cohort (95 percent confidence interval, 83 to 95 percent) could be attributed to habits and forms of behavior that did not conform to the low-risk pattern. Conclusions Our findings support the hypothesis that the majority of cases of type 2 diabetes could be prevented by the adoption of a healthier lifestyle.