931 resultados para Small angle X-ray scattering
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
High-pressure powder X-ray diffraction is a fundamental technique for investigating structural responses to externally applied force. Synchrotron sources and two-dimensional detectors are required. In contrast to this conventional setup, high-resolution beamlines equipped with one-dimensional detectors could offer much better resolved peaks but cannot deliver accurate structure factors because they only sample a small portion of the Debye rings, which are usually inhomogeneous and spotty because of the small amount of sample. In this study, a simple method to overcome this problem is presented and successfully applied to solving the structure of an L-serine polymorph from powder data. A comparison of the obtained high-resolution high-pressure data with conventional data shows that this technique, providing up to ten times better angular resolution, can be of advantage for indexing, for lattice parameter refinement, and even for structure refinement and solution in special cases.
Resumo:
Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data: 1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.
Resumo:
The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.
Resumo:
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.
Resumo:
X-ray diffraction experiments revealed the structure of the N photointermediate of bacteriorhodopsin. Since the retinal Schiff base is reprotonated from Asp-96 during the M to N transition in the photocycle, and Asp-96 is reprotonated during the lifetime of the N intermediate, or immediately after, N is a key intermediate for understanding the light-driven proton pump. The N intermediate accumulates in large amounts during continuous illumination of the F171C mutant at pH 7 and 5 degrees Celsius. Small but significant changes of the structure were detected in the x-ray diffraction profile under these conditions. The changes were reversible and reproducible. The difference Fourier map indicates that the major change occurs near helix F. The observed diffraction changes between N and the original state were essentially identical to the diffraction changes reported for the M intermediate of the D96N mutant of bacteriorhodopsin. Thus, we find that the protein conformations of the M and N intermediates of the photocycle are essentially the same, in spite of the fact that in M the Schiff base is unprotonated and in N it is protonated. The observed structural change near helix F will increase access of the Schiff base and Asp-96 to the cytoplasmic surface and facilitate the proton transfer events that begin with the decay of the M state.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
We report on an outburst of the high mass X-ray binary 4U 0115+634 with a pulse period of 3.6 s in 2008 March/April as observed with RXTE and INTEGRAL. During the outburst the neutron star’s luminosity varied by a factor of 10 in the 3–50 keV band. In agreement with earlier work we find evidence of five cyclotron resonance scattering features at ~10.7, 21.8, 35.5, 46.7, and 59.7 keV. Previous work had found an anticorrelation between the fundamental cyclotron line energy and the X-ray flux. We show that this apparent anticorrelation is probably due to the unphysical interplay of parameters of the cyclotron line with the continuum models used previously, e.g., the negative and positive exponent power law (NPEX). For this model, we show that cyclotron line modeling erroneously leads to describing part of the exponential cutoff and the continuum variability, and not the cyclotron lines. When the X-ray continuum is modeled with a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV, the correlation between the line energy and the flux vanishes, and the line parameters remain virtually constant over the outburst. We therefore conclude that the previously reported anticorrelation is an artifact of the assumptions adopted in the modeling of the continuum.
Resumo:
We report near-infrared radial velocity (RV) measurements of the recently identified donor star in the high mass X-ray binary (HMXB) system OAO 1657−415 obtained in the H band using ISAAC on the Very Large Telescope. Cross-correlation methods were employed to construct a RV curve with a semi-amplitude of 22.1 ± 3.5 km s−1. Combined with other measured parameters of this system it provides a dynamically determined neutron star (NS) mass of 1.42 ± 0.26 M⊙ and a mass of 14.3 ± 0.8 M⊙ for the Ofpe/WN9 highly evolved donor star. OAO 1657−415 is an eclipsing HMXB pulsar with the largest eccentricity and orbital period of any within its class. Of the 10 known eclipsing X-ray binary pulsars OAO 1657−415 becomes the ninth with a dynamically determined NS mass solution and only the second in an eccentric system. Furthermore, the donor star in OAO 1657−415 is much more highly evolved than the majority of the supergiant donors in other HMXBs, joining a small but growing list of HMXBs donors with extensive hydrogen depleted atmospheres. Considering the evolutionary development of OAO 1657−415, we have estimated the binding energy of the envelope of the mass donor and find that there is insufficient energy for the removal of the donor’s envelope via spiral-in, ruling out a common envelope evolutionary scenario. With its non-zero eccentricity and relatively large orbital period the identification of a definitive evolutionary pathway for OAO 1657−415 remains problematic, we conclude by proposing two scenarios which may account for OAO 1657−415 current orbital configuration.
Resumo:
The effect of a severe steaming treatment on the physicochemical properties and catalytic performance of H-SAPO-34 molecular sieves during the methanol-to-hydrocarbons (MTH) reaction has been investigated with a combination of scanning transmission X-ray microscopy (STXM), catalytic testing, and bulk characterization techniques, including ammonia temperature programmed desorption and 27Al and 29Si magic angle spinning nuclear magnetic resonance. For this purpose, two samples, namely a calcined and a steamed H-SAPO-34 catalyst powder, have been compared. It has been found that calcined H-SAPO-34 displays a high selectivity towards light olefins, yet shows a poor stability as compared to a zeolite H-ZSM-5 catalyst. Moreover, in situ STXM at the carbon K-edge during the MTH reaction allows construction of nanoscale chemical maps of the hydrocarbon species formed within the H-SAPO-34 aggregates as a function of reaction time and steam post-treatment. It was found that there is an initial preferential formation of coke precursor species within the core of the H-SAPO-34 aggregates. For longer times on stream the formation of the coke precursor species is extended to the outer regions, progressively filling the entire H-SAPO-34 catalyst particle. In contrast, the hydrothermally treated H-SAPO-34 showed similar reaction selectivity, but decreased activity and catalyst stability with respect to its calcined counterpart. These variations in MTH performance are related to a faster and more homogeneous formation of coke precursor species filling up the entire steamed H-SAPO-34 catalyst particle. Finally, the chemical imaging capabilities of the STXM method at the Al and Si K-edge are illustrated by visualizing the silicon islands at the nanoscale before and after steaming H-SAPO-34.
Resumo:
We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeKα spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in γ Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeKα is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σline< 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V ~ 1000 km s-1). (6) The equivalent hydrogen column (NH) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object – wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor’s wind in the FeKα emission and the absorption when the donor is a supergiant massive star.
Resumo:
The structure of two small ossified optic capsules from mid-Palaeozoic placoderm fishes has been revealed in fine detail, by the use of Xray microtomography analysis and 3D visualisation software. These two specimens are 410 million-year-old; they were collected from an Early Devonian (Lochkovian) limestone in central New South Wales, and are the oldest known optic capsules from jawed fishes. The capsules show attachment areas for seven extrinsic eye muscles, rather than the six until recently deemed universal for gnathostomes. The analysis also revealed structures within the ossified cartilage which covered the medial surface of the eyeball, including nerve tracts, vascular canals, and possibly a choroid rete mirabile. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.