996 resultados para Silicon wafer
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. ©2011 Optical Society of America.
Resumo:
Silicon carbide (SiC) bipolar junction transistors (BJTs) require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200-V/40-A SiC BJT in a dc-dc boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 60%. The total reduction of the driver consumption is 3459 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. © 2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. ©2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.
Resumo:
Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-MicroTec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. © 2009 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
We experimentally demonstrate an ultra-thin silicon nitride microring resonator operating at wavelength of 970nm that is favorable for large variety of biophotonic applications. Optimization parameters for improved sensitivity and light-mater interaction are presented. © 2010 Optical Society of America.