933 resultados para Set of Weak Stationary Dynamic Actions
Resumo:
En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.
Resumo:
Recientemente, el paradigma de la computación en la nube ha recibido mucho interés por parte tanto de la industria como del mundo académico. Las infraestructuras cloud públicas están posibilitando nuevos modelos de negocio y ayudando a reducir costes. Sin embargo, una compañía podría desear ubicar sus datos y servicios en sus propias instalaciones, o tener que atenerse a leyes de protección de datos. Estas circunstancias hacen a las infraestructuras cloud privadas ciertamente deseables, ya sea para complementar a las públicas o para sustituirlas por completo. Por desgracia, las carencias en materia de estándares han impedido que las soluciones para la gestión de infraestructuras privadas se hayan desarrollado adecuadamente. Además, la multitud de opciones disponibles ha creado en los clientes el miedo a depender de una tecnología concreta (technology lock-in). Una de las causas de este problema es la falta de alineación entre la investigación académica y los productos comerciales, ya que aquella está centrada en el estudio de escenarios idealizados sin correspondencia con el mundo real, mientras que éstos consisten en soluciones desarrolladas sin tener en cuenta cómo van a encajar con los estándares más comunes o sin preocuparse de hacer públicos sus resultados. Con objeto de resolver este problema, propongo un sistema de gestión modular para infraestructuras cloud privadas enfocado en tratar con las aplicaciones en lugar de centrarse únicamente en los recursos hardware. Este sistema de gestión sigue el paradigma de la computación autónoma y está diseñado en torno a un modelo de información sencillo, desarrollado para ser compatible con los estándares más comunes. Este modelo divide el entorno en dos vistas, que sirven para separar aquello que debe preocupar a cada actor involucrado del resto de información, pero al mismo tiempo permitiendo relacionar el entorno físico con las máquinas virtuales que se despliegan encima de él. En dicho modelo, las aplicaciones cloud están divididas en tres tipos genéricos (Servicios, Trabajos de Big Data y Reservas de Instancias), para que así el sistema de gestión pueda sacar partido de las características propias de cada tipo. El modelo de información está complementado por un conjunto de acciones de gestión atómicas, reversibles e independientes, que determinan las operaciones que se pueden llevar a cabo sobre el entorno y que es usado para hacer posible la escalabilidad en el entorno. También describo un motor de gestión encargado de, a partir del estado del entorno y usando el ya mencionado conjunto de acciones, la colocación de recursos. Está dividido en dos niveles: la capa de Gestores de Aplicación, encargada de tratar sólo con las aplicaciones; y la capa del Gestor de Infraestructura, responsable de los recursos físicos. Dicho motor de gestión obedece un ciclo de vida con dos fases, para así modelar mejor el comportamiento de una infraestructura real. El problema de la colocación de recursos es atacado durante una de las fases (la de consolidación) por un resolutor de programación entera, y durante la otra (la online) por un heurístico hecho ex-profeso. Varias pruebas han demostrado que este acercamiento combinado es superior a otras estrategias. Para terminar, el sistema de gestión está acoplado a arquitecturas de monitorización y de actuadores. Aquella estando encargada de recolectar información del entorno, y ésta siendo modular en su diseño y capaz de conectarse con varias tecnologías y ofrecer varios modos de acceso. ABSTRACT The cloud computing paradigm has raised in popularity within the industry and the academia. Public cloud infrastructures are enabling new business models and helping to reduce costs. However, the desire to host company’s data and services on premises, and the need to abide to data protection laws, make private cloud infrastructures desirable, either to complement or even fully substitute public oferings. Unfortunately, a lack of standardization has precluded private infrastructure management solutions to be developed to a certain level, and a myriad of diferent options have induced the fear of lock-in in customers. One of the causes of this problem is the misalignment between academic research and industry ofering, with the former focusing in studying idealized scenarios dissimilar from real-world situations, and the latter developing solutions without taking care about how they f t with common standards, or even not disseminating their results. With the aim to solve this problem I propose a modular management system for private cloud infrastructures that is focused on the applications instead of just the hardware resources. This management system follows the autonomic system paradigm, and is designed around a simple information model developed to be compatible with common standards. This model splits the environment in two views that serve to separate the concerns of the stakeholders while at the same time enabling the traceability between the physical environment and the virtual machines deployed onto it. In it, cloud applications are classifed in three broad types (Services, Big Data Jobs and Instance Reservations), in order for the management system to take advantage of each type’s features. The information model is paired with a set of atomic, reversible and independent management actions which determine the operations that can be performed over the environment and is used to realize the cloud environment’s scalability. From the environment’s state and using the aforementioned set of actions, I also describe a management engine tasked with the resource placement. It is divided in two tiers: the Application Managers layer, concerned just with applications; and the Infrastructure Manager layer, responsible of the actual physical resources. This management engine follows a lifecycle with two phases, to better model the behavior of a real infrastructure. The placement problem is tackled during one phase (consolidation) by using an integer programming solver, and during the other (online) with a custom heuristic. Tests have demonstrated that this combined approach is superior to other strategies. Finally, the management system is paired with monitoring and actuators architectures. The former able to collect the necessary information from the environment, and the later modular in design and capable of interfacing with several technologies and ofering several access interfaces.
Resumo:
Actualmente la optimization de la calidad de experiencia (Quality of Experience- QoE) de HTTP Adaptive Streaming (HAS) de video recibe una atención creciente. Este incremento de interés proviene fundamentalmente de las carencias de las soluciones actuales HAS, que, al no ser QoE-driven, no incluyen la percepción de la calidad de los usuarios finales como una parte integral de la lógica de adaptación. Por lo tanto, la obtención de información de referencia fiable en QoE en HAS presenta retos importantes, ya que las metodologías de evaluación subjetiva de la calidad de vídeo propuestas en las normas actuales no son adecuadas para tratar con la variación temporal de la calidad que es consustancial de HAS. Esta tesis investiga la influencia de la adaptación dinámica en la calidad de la transmisión de vídeo considerando métodos de evaluación subjetiva. Tras un estudio exhaustivo del estado del arte en la evaluación subjetiva de QoE en HAS, se han resaltado los retos asociados y las líneas de investigación abiertas. Como resultado, se han seleccionado dos líneas principales de investigación: el análisis del impacto en la QoE de los parámetros de las técnicas de adaptación y la investigación de las metodologías de prueba subjetiva adecuada para evaluación de QoE en HAS. Se han llevado a cabo un conjunto de experimentos de laboratorio para investigar las cuestiones planteadas mediante la utilización de diferentes metodologáas para pruebas subjetivas. El análisis estadístico muestra que no son robustas todas las suposiciones y reivindicaciones de las referencias analizadas, en particular en lo que respecta al impacto en la QoE de la frecuencia de las variaciones de calidad, de las adaptaciones suaves o abruptas y de las oscilaciones de calidad. Por otra parte, nuestros resultados confirman la influencia de otros parámetros, como la longitud de los segmentos de vídeo y la amplitud de las oscilaciones de calidad. Los resultados también muestran que tomar en consideración las características objetivas de los contenidos puede ser beneficioso para la mejora de la QoE en HAS. Además, todos los resultados han sido validados mediante extensos análisis experimentales que han incluido estudio tanto en otros laboratorios como en crowdsourcing Por último, sobre los aspectos metodológicos de las pruebas subjetivas de QoE, se ha realizado la comparación entre los resultados experimentales obtenidos a partir de un método estandarizado basado en estímulos cortos (ACR) y un método semi continuo (desarrollado para la evaluación de secuencias prolongadas de vídeo). A pesar de algunas diferencias, el resultado de los análisis estadísticos no muestra ningún efecto significativo de la metodología de prueba. Asimismo, aunque se percibe la influencia de la presencia de audio en la evaluación de degradaciones del vídeo, no se han encontrado efectos estadísticamente significativos de dicha presencia. A partir de la ausencia de influencia del método de prueba y de la presencia de audio, se ha realizado un análisis adicional sobre el impacto de realizar comparaciones estadísticas múltiples en niveles estadísticos de importancia que aumentan la probabilidad de los errores de tipo-I (falsos positivos). Nuestros resultados muestran que, para obtener un efectos sólido en el análisis estadístico de los resultados subjetivos, es necesario aumentar el número de sujetos de las pruebas claramente por encima de los tamaños de muestras propuestos por las normas y recomendaciones actuales. ABSTRACT Optimizing the Quality of Experience (QoE) of HTTP adaptive video streaming (HAS) is receiving increasing attention nowadays. The growth of interest is mainly caused by the fact that current HAS solutions are not QoE-driven, i.e. end-user quality perception is not integral part of the adaptation logic. However, obtaining the necessary reliable ground truths on HAS QoE faces substantial challenges, since the subjective video quality assessment methodologies as proposed by current standards are not well-suited for dealing with the time-varying quality properties that are characteristic for HAS. This thesis investigates the influence of dynamic quality adaptation on the QoE of streaming video by means of subjective evaluation approaches. Based on a comprehensive survey of related work on subjective HAS QoE assessment, the related challenges and open research questions are highlighted and discussed. As a result, two main research directions are selected for further investigation: analysis of the QoE impact of different technical adaptation parameters, and investigation of testing methodologies suitable for HAS QoE evaluation. In order to investigate related research issues and questions, a set of laboratory experiments have been conducted using different subjective testing methodologies. Our statistical analysis demonstrates that not all assumptions and claims reported in the literature are robust, particularly as regards the QoE impact of switching frequency, smooth vs. abrupt switching, and quality oscillation. On the other hand, our results confirm the influence of some other parameters such as chunk length and switching amplitude on perceived quality. We also show that taking the objective characteristics of the content into account can be beneficial to improve the adaptation viewing experience. In addition, all aforementioned findings are validated by means of an extensive cross-experimental analysis that involves external laboratory and crowdsourcing studies. Finally, to address the methodological aspects of subjective QoE testing, a comparison between the experimental results obtained from a (short stimuli-based) ACR standardized method and a semi-continuous method (developed for assessment of long video sequences) has been performed. In spite of observation of some differences, the result of statistical analysis does not show any significant effect of testing methodology. Similarly, although the influence of audio presence on evaluation of video-related degradations is perceived, no statistically significant effect of audio presence could be found. Motivating by this finding (no effect of testing method and audio presence), a subsequent analysis has been performed investigating the impact of performing multiple statistical comparisons on statistical levels of significance which increase the likelihood of Type-I errors (false positives). Our results show that in order to obtain a strong effect from the statistical analysis of the subjective results, it is necessary to increase the number of test subjects well beyond the sample sizes proposed by current quality assessment standards and recommendations.
Resumo:
Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.
Resumo:
El cálculo de cargas de aerogeneradores flotantes requiere herramientas de simulación en el dominio del tiempo que consideren todos los fenómenos que afectan al sistema, como la aerodinámica, la dinámica estructural, la hidrodinámica, las estrategias de control y la dinámica de las líneas de fondeo. Todos estos efectos están acoplados entre sí y se influyen mutuamente. Las herramientas integradas se utilizan para calcular las cargas extremas y de fatiga que son empleadas para dimensionar estructuralmente los diferentes componentes del aerogenerador. Por esta razón, un cálculo preciso de las cargas influye de manera importante en la optimización de los componentes y en el coste final del aerogenerador flotante. En particular, el sistema de fondeo tiene gran impacto en la dinámica global del sistema. Muchos códigos integrados para la simulación de aerogeneradores flotantes utilizan modelos simplificados que no consideran los efectos dinámicos de las líneas de fondeo. Una simulación precisa de las líneas de fondeo dentro de los modelos integrados puede resultar fundamental para obtener resultados fiables de la dinámica del sistema y de los niveles de cargas en los diferentes componentes. Sin embargo, el impacto que incluir la dinámica de los fondeos tiene en la simulación integrada y en las cargas todavía no ha sido cuantificada rigurosamente. El objetivo principal de esta investigación es el desarrollo de un modelo dinámico para la simulación de líneas de fondeo con precisión, validarlo con medidas en un tanque de ensayos e integrarlo en un código de simulación para aerogeneradores flotantes. Finalmente, esta herramienta, experimentalmente validada, es utilizada para cuantificar el impacto que un modelos dinámicos de líneas de fondeo tienen en la computación de las cargas de fatiga y extremas de aerogeneradores flotantes en comparación con un modelo cuasi-estático. Esta es una información muy útil para los futuros diseñadores a la hora de decidir qué modelo de líneas de fondeo es el adecuado, dependiendo del tipo de plataforma y de los resultados esperados. El código dinámico de líneas de fondeo desarrollado en esta investigación se basa en el método de los Elementos Finitos, utilizando en concreto un modelo ”Lumped Mass” para aumentar su eficiencia de computación. Los experimentos realizados para la validación del código se realizaron en el tanque del École Céntrale de Nantes (ECN), en Francia, y consistieron en sumergir una cadena con uno de sus extremos anclados en el fondo del tanque y excitar el extremo suspendido con movimientos armónicos de diferentes periodos. El código demostró su capacidad para predecir la tensión y los movimientos en diferentes posiciones a lo largo de la longitud de la línea con gran precisión. Los resultados indicaron la importancia de capturar la dinámica de las líneas de fondeo para la predicción de la tensión especialmente en movimientos de alta frecuencia. Finalmente, el código se utilizó en una exhaustiva evaluación del efecto que la dinámica de las líneas de fondeo tiene sobre las cargas extremas y de fatiga de diferentes conceptos de aerogeneradores flotantes. Las cargas se calcularon para tres tipologías de aerogenerador flotante (semisumergible, ”spar-buoy” y ”tension leg platform”) y se compararon con las cargas obtenidas utilizando un modelo cuasi-estático de líneas de fondeo. Se lanzaron y postprocesaron más de 20.000 casos de carga definidos por la norma IEC 61400-3 siguiendo todos los requerimientos que una entidad certificadora requeriría a un diseñador industrial de aerogeneradores flotantes. Los resultados mostraron que el impacto de la dinámica de las líneas de fondeo, tanto en las cargas de fatiga como en las extremas, se incrementa conforme se consideran elementos situados más cerca de la plataforma: las cargas en la pala y en el eje sólo son ligeramente modificadas por la dinámica de las líneas, las cargas en la base de la torre pueden cambiar significativamente dependiendo del tipo de plataforma y, finalmente, la tensión en las líneas de fondeo depende fuertemente de la dinámica de las líneas, tanto en fatiga como en extremas, en todos los conceptos de plataforma que se han evaluado. ABSTRACT The load calculation of floating offshore wind turbine requires time-domain simulation tools taking into account all the phenomena that affect the system such as aerodynamics, structural dynamics, hydrodynamics, control actions and the mooring lines dynamics. These effects present couplings and are mutually influenced. The results provided by integrated simulation tools are used to compute the fatigue and ultimate loads needed for the structural design of the different components of the wind turbine. For this reason, their accuracy has an important influence on the optimization of the components and the final cost of the floating wind turbine. In particular, the mooring system greatly affects the global dynamics of the floater. Many integrated codes for the simulation of floating wind turbines use simplified approaches that do not consider the mooring line dynamics. An accurate simulation of the mooring system within the integrated codes can be fundamental to obtain reliable results of the system dynamics and the loads. The impact of taking into account the mooring line dynamics in the integrated simulation still has not been thoroughly quantified. The main objective of this research consists on the development of an accurate dynamic model for the simulation of mooring lines, validate it against wave tank tests and then integrate it in a simulation code for floating wind turbines. This experimentally validated tool is finally used to quantify the impact that dynamic mooring models have on the computation of fatigue and ultimate loads of floating wind turbines in comparison with quasi-static tools. This information will be very useful for future designers to decide which mooring model is adequate depending on the platform type and the expected results. The dynamic mooring lines code developed in this research is based in the Finite Element Method and is oriented to the achievement of a computationally efficient code, selecting a Lumped Mass approach. The experimental tests performed for the validation of the code were carried out at the `Ecole Centrale de Nantes (ECN) wave tank in France, consisting of a chain submerged into a water basin, anchored at the bottom of the basin, where the suspension point of the chain was excited with harmonic motions of different periods. The code showed its ability to predict the tension and the motions at several positions along the length of the line with high accuracy. The results demonstrated the importance of capturing the evolution of the mooring dynamics for the prediction of the line tension, especially for the high frequency motions. Finally, the code was used for an extensive assessment of the effect of mooring dynamics on the computation of fatigue and ultimate loads for different floating wind turbines. The loads were computed for three platforms topologies (semisubmersible, spar-buoy and tension leg platform) and compared with the loads provided using a quasi-static mooring model. More than 20,000 load cases were launched and postprocessed following the IEC 61400-3 guideline and fulfilling the conditions that a certification entity would require to an offshore wind turbine designer. The results showed that the impact of mooring dynamics in both fatigue and ultimate loads increases as elements located closer to the platform are evaluated; the blade and the shaft loads are only slightly modified by the mooring dynamics in all the platform designs, the tower base loads can be significantly affected depending on the platform concept and the mooring lines tension strongly depends on the lines dynamics both in fatigue and extreme loads in all the platform concepts evaluated.
Resumo:
Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.
Resumo:
The inverter in a photovoltaic system assures two essential functions. The first is to track the maximum power point of the system IV curve throughout variable environmental conditions. The second is to convert DC power delivered by the PV panels into AC power. Nowadays, in order to qualify inverters, manufacturers and certifying organisms use mainly European and/or CEC efficiency standards. The question arises if these are still representative of CPV system behaviour. We propose to use a set of CPV – specific weighted average and a representative dynamic response to have a better determination of the static and dynamic MPPT efficiencies. Four string-sized commercial inverters used in real CPV plants have been tested.
Resumo:
Physical and social transformation processes that take place in urban contexts with strong spatial growth and hardly any economic development frequently have significant adverse impacts for the affected people, which tend to be made invisible. This paper presents an analytical framework to explore different ways to approach urban transformation processes (supply side), their impacts on the set of needs of the community (demand side) and their consequences on the urban environment as a whole (context). The proposed method has been used to assess three actions related to the physical and social transformation of the largest self-made settlement in the city of Dakar, Senegal, during the 2005–2012 period. Research findings show how exogenous interests are privileged over the common good when the affected citizens are not effectively involved in decision-making processes.
Resumo:
In this article, a model for the determination of displacements, deformations and tensions of a submarine pipeline during the construction is presented. The process is carried out from an initial floating situation to the final laying position on the seabed. The existence of currents and small waves are also considered. Firstly, this technique, usually applied to polyethylene pipelines, is described in this paper as well as some real world examples, as well as the variables that can be modified to control the behavior of the structure. A detailed description of the actions in this process is considered, specially the ones related to marine environment, as Archimedes force, current and sea waves. The behavior of the pipeline is modeled with a non linear elasto dynamic model where geometric non linearities are taken into account. A 3-D beam model, without cross section deformation effects, is developed. Special care is taken in the numerical analysis, developed within an updated lagrangian formulation framework, with the sea bed contact, the follower forces due to the external water pressures and the dynamic actions. Finally, some subroutines are implemented into ANSYS to simulate the two dimensional case, where the whole construction process is achieved. With this software, a sensibility analysis of the bending moments, axial forces and stresses obtained with different values of the control variables in order to optimize the construction steps. These control variables are, the axial load in the pipe, the inundated inner length and the distance of the control barge from the coast.
Resumo:
Dynamic combinatorial libraries are mixtures of compounds that exist in a dynamic equilibrium and can be driven to compositional self adaptation via selective binding of a specific assembly of certain components to a molecular target. We present here an extension of this initial concept to dynamic libraries that consists of two levels, the first formed by the coordination of terpyridine-based ligands to the transition metal template, and the second, by the imine formation with the aldehyde substituents on the terpyridine moieties. Dialdehyde 7 has been synthesized, converted into a variety of ligands, oxime ethers L11–L33 and acyl hydrazones L44–L77, and subsequently into corresponding cobalt complexes. A typical complex, Co(L22)22+ is shown to engage in rapid exchange with a competing ligand L11 and with another complex, Co(L22)22+ in 30% acetonitrile/water at pH 7.0 and 25°C. The exchange in the corresponding Co(III) complexes is shown to be much slower. Imine exchange in the acyl hydrazone complexes (L44–L77) is strongly controlled by pH and temperature. The two types of exchange, ligand and imine, can thus be used as independent equilibrium processes controlled by different types of external intervention, i.e., via oxidation/reduction of the metal template and/or change in the pH/temperature of the medium. The resulting double-level dynamic libraries are therefore named orthogonal, in similarity with the orthogonal protecting groups in organic synthesis. Sample libraries of this type have been synthesized and showed the complete expected set of components in electrospray ionization MS.
Resumo:
The NUP98 gene encodes precursor proteins that generate two nucleoplasmically oriented nucleoporins, NUP98 and NUP96. By using gene targeting, we have selectively disrupted the murine NUP98 protein, leaving intact the expression and localization of NUP96. We show that NUP98 is essential for mouse gastrulation, a developmental stage that is associated with rapid cell proliferation, but dispensable for basal cell growth. NUP98−/− cells had an intact nuclear envelope with a normal number of embedded nuclear pore complexes. Typically, NUP98-deficient cells contained on average approximately 5-fold more cytoplasmic annulate lamellae than control cells. We found that a set of cytoplasmically oriented nucleoporins, including NUP358, NUP214, NUP88, and p62, assembled inefficiently into nuclear pores of NUP98−/− cells. Instead, these nucleoporins were prominently associated with the annulate lamellae. By contrast, a group of nucleoplasmically oriented nucleoporins, including NUP153, NUP50, NUP96, and NUP93, had no affinity for annulate lamellae and assembled normally into nuclear pores. Mutant pores were significantly impaired in transport receptor-mediated docking of proteins with a nuclear localization signal or M9 import signal and showed weak nuclear import of such substrates. In contrast, the ability of mutant pores to import ribosomal protein L23a and spliceosome protein U1A appeared intact. These observations show that NUP98 disruption selectively impairs discrete protein import pathways and support the idea that transport of distinct import complexes through the nuclear pore complex is mediated by specific subsets of nucleoporins.
Resumo:
Estimation of evolutionary distances has always been a major issue in the study of molecular evolution because evolutionary distances are required for estimating the rate of evolution in a gene, the divergence dates between genes or organisms, and the relationships among genes or organisms. Other closely related issues are the estimation of the pattern of nucleotide substitution, the estimation of the degree of rate variation among sites in a DNA sequence, and statistical testing of the molecular clock hypothesis. Mathematical treatments of these problems are considerably simplified by the assumption of a stationary process in which the nucleotide compositions of the sequences under study have remained approximately constant over time, and there now exist fairly extensive studies of stationary models of nucleotide substitution, although some problems remain to be solved. Nonstationary models are much more complex, but significant progress has been recently made by the development of the paralinear and LogDet distances. This paper reviews recent studies on the above issues and reports results on correcting the estimation bias of evolutionary distances, the estimation of the pattern of nucleotide substitution, and the estimation of rate variation among the sites in a sequence.
Resumo:
A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.
Resumo:
The recently sequenced genome of the parasitic bacterium Mycoplasma genitalium contains only 468 identified protein-coding genes that have been dubbed a minimal gene complement [Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., et al. (1995) Science 270, 397-403]. Although the M. genitalium gene complement is indeed the smallest among known cellular life forms, there is no evidence that it is the minimal self-sufficient gene set. To derive such a set, we compared the 468 predicted M. genitalium protein sequences with the 1703 protein sequences encoded by the other completely sequenced small bacterial genome, that of Haemophilus influenzae. M. genitalium and H. influenzae belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Therefore, the genes that are conserved in these two bacteria are almost certainly essential for cellular function. It is this category of genes that is most likely to approximate the minimal gene set. We found that 240 M. genitalium genes have orthologs among the genes of H. influenzae. This collection of genes falls short of comprising the minimal set as some enzymes responsible for intermediate steps in essential pathways are missing. The apparent reason for this is the phenomenon that we call nonorthologous gene displacement when the same function is fulfilled by nonorthologous proteins in two organisms. We identified 22 nonorthologous displacements and supplemented the set of orthologs with the respective M. genitalium genes. After examining the resulting list of 262 genes for possible functional redundancy and for the presence of apparently parasite-specific genes, 6 genes were removed. We suggest that the remaining 256 genes are close to the minimal gene set that is necessary and sufficient to sustain the existence of a modern-type cell. Most of the proteins encoded by the genes from the minimal set have eukaryotic or archaeal homologs but seven key proteins of DNA replication do not. We speculate that the last common ancestor of the three primary kingdoms had an RNA genome. Possibilities are explored to further reduce the minimal set to model a primitive cell that might have existed at a very early stage of life evolution.