953 resultados para Semi-supervised classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: SIOPEN scoring of 123I mIBG imaging has been shown to predict response to induction chemotherapy and outcome at diagnosis in children with HRN.Method: Patterns of skeletal 123I mIBG uptake were assigned numerical scores (Mscore) ranging from 0 (no metastasis) to 72 (diffuse metastases) within 12 body areas as described previously. 271 anonymised, paired image data sets acquired at diagnosis and on completion of Rapid COJEC induction chemotherapy were reviewed, constituting a representative sample of 1602 children treated prospectively within the HR-NBL1/SIOPEN trial. Pre-and post-treatment Mscores were compared with bone marrow cytology (BM) and 3 year event free survival (EFS).Results: Results 224/271 patients showed skeletal MIBG-uptake at diagnosis and were evaluable forMIBG-response. Complete response (CR) on MIBG to Rapid COJEC induction was achieved by 66%, 34% and 15% of patients who had pre-treatment Mscores of <18 (n¼65, 29%), 18-44 (n¼95,42%) and Y ´ 45 (n¼64, 28.5%) respectively (chi squared test p<.0001). Mscore at diagnosis and on completion of Rapid COJEC correlated strongly with BM involvement (p<0.0001). The correlation of pre score with post scores and response was highly significant (p<0.001). Most importantly, the 3 year EFS in 47 children with Mscore 0 at diagnosis was 0.68 (A ` 0.07), by comparison with 0.42 (A` 0.06), 0.35 (A` 0.05) and 0.25 (A` 0.06) for patients in pre-treatment score groups <18, 18-44 and Y ´ 45, respectively (p<0.001). AnMscore threshold ofY ´ 45 at diagnosis was associated with significantly worse outcome by comparison with all other Mscore groups (p¼0.029). The 3 year EFS of 0.53 (A` 0.07) of patients in metastatic CR (mIBG and BM) after Rapid Cojec (33%) is clearly superior to patients not achieving metastatic CR (0.24 (A ` 0.04), p¼0.005).Conclusion: SIOPEN scoring of 123I mIBG imaging has been shown to predict response to induction chemotherapy and outcome at diagnosis in children with HRN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the development and application of the generic methodology for automatic processing (mapping and classification) of environmental data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve the problem of spatial data mapping (regression). The Probabilistic Neural Network (PNN) is considered as an automatic tool for spatial classifications. The automatic tuning of isotropic and anisotropic GRNN/PNN models using cross-validation procedure is presented. Results are compared with the k-Nearest-Neighbours (k-NN) interpolation algorithm using independent validation data set. Real case studies are based on decision-oriented mapping and classification of radioactively contaminated territories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of 'stemness' and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.