948 resultados para Sand burial
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Strontium/calcium (Sr/Ca) ratios in bulk and foraminiferal calcite have been used to constrain the history of Sr/Ca in the oceans and to evaluate calcite diagenetic alteration. However bulk Sr/Ca records also may be influenced by differences in Sr uptake and/or in the diagenetic susceptibility of different calcium carbonate sedimentary components. We present data on the sediment size fraction and calcium carbonate distribution in bulk samples, Sr/Ca in a range of sedimentary size components, and Sr/Ca in bulk sediments. Ocean Drilling Program samples from sites on Ontong Java Plateau and Ceara Rise (in the western equatorial Pacific and Atlantic, respectively) and from sites in the eastern equatorial Pacific were selected to represent progressive stages in the diagenetic pathway from the sea floor through a range of burial depths equivalent to sediment ages of ~5.6, ~9.4, and ~37.1 Ma. Samples were subdivided by size to produce a unique data set of size-specific Sr/Ca ratios. Fine fraction (<45 ?m) Sr/Ca ratios are higher than those of all corresponding coarse fractions, indicating that fine nannofossil-dominated calcite has a Sr partition coefficient 1.3-1.5 times greater than that of coarse foraminifera-dominated calcite. Thus, absolute values of bulk Sr/Ca in contemporaneous samples reflect, in part, the ratio of fine to coarse calcite sedimentary components. Sr/Ca values in fine and coarse components also behave differently in their response to pre-burial dissolution and to recrystallization at depth. Coarse size components are sensitive to bottom water carbonate ion undersaturation, and they lose original Sr/Ca differences among contemporary samples over not, vert, similar10 my. In contrast, fine components recrystallize faster in more deeply buried samples. Interpretation of the historical Sr/Ca record is complicated by post-depositional diagenetic artifacts, and thus our data do not provide clear evidence of specific temporal changes in oceanic Sr/Ca ratios over the past 10 million years. This paper represents the first systematic attempt to examine trends in calcite Sr/Ca as a function of sediment size fraction and age.
Resumo:
Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.
Resumo:
Detrital modes determined on 68 sandstone samples from CRP-3 drillcore indicate a continuation of the dynamic history of uplift-related erosion and unroofing previously documented in CRP-1 and CRP-2/2A. The source area is identified very strongly with the Transantarctic Mountains (TAM) Dry Valleys block in southern Victoria Land. Initial unroofing of the TAM comprised removal of much of a former capping sequence of Jurassic Kirkpatrick basalts, which preceded the formation of the Victoria Land Basin. Erosion of Beacon Supergroup outcrops took place during progressive uplift of the TAM in the Oligocene. Earliest CRP-3 Oligocene samples above 788 metres below the sea floor (mbsf) were sourced overwhelmingly in Beacon Supergroup strata, including a recognisable contribution from Triassic volcanogenic Lashly Formation sandstones (uppermost Victoria Group). Moving up-section, by 500 mbsf, the CRP-3 samples are depauperate quartz arenites dominantly derived from the quartzose Devonian Taylor Group. Between c. 500 and 450 mbsf, the modal parameters show a distinctive change indicating that small outcrops of basement granitoids and metamorphic rocks were also being eroded along with the remaining Beacon (mainly Taylor Group) sequence. Apart from enigmatic fluctuations in modal indices above 450 mbsf, similar to those displayed by samples in CRP-2/2A, the CRP-3 modes are essentially constant (within a broad data scatter) to the top of CRP-3. The proportion of exposed basement outcrop remained at < 20 %, indicating negligible uplift (i.e. relative stability) throughout that period.
Resumo:
"November 1977."
Resumo:
Contract no.: DACW72-76-C-0007.
Resumo:
"July 1979."
Resumo:
"July 1979."
Resumo:
"November 1980."
Resumo:
"October 1982."
Resumo:
Issued Sept. 1978.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.