962 resultados para SYSTEM DYNAMICS
Resumo:
Nonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor, considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter. Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a medium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena, including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close to the value of the pendulum's angular displacement given by alpha (C)= pi /2. The aims of this study are to better understand nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the existence of a chaotic attractor near the fundamental resonance. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent molecules are treated as simple dipoles that can point toward or away from the central charge (Ising spins). Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice for different central charges, radii of outer shell, and temperatures. By analyzing the density of states as a function of energy and temperatures, we have determined the existence of multiple freezing transitions. Each of them can be associated with the freezing of a different layer of the solvent. (C) 2002 American Institute of Physics.
Resumo:
We calculate the contribution of relativistic dynamics on the neutron-deutron scattering length and triton binding energy employing five sets trinucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off- and on-shell variations of two- and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (C) 1994 Academic Press, Inc.
Resumo:
Separation and purification of lanthanum from other rare-earth (RE) elements are highly complex processes comprising several steps of extraction using organic solvents or ion-exchange resins at high costs. In order to study the biosorption process as an alternative for conventional lanthanum recovery, this work investigated some basic aspects of lanthanum-Sargassum biomass interactions in batch equilibrium contact. The dynamics of biosorption, influence of pH, and the desorption of this RE were investigated. Maximum biosorption coefficient (q(max)) increased from 0.05 at pH 2 to 0.53 mmol g(-1) at pH 5 for lanthanum sulfate. When lanthanum chloride was used, a higher q(max) at pH 5 (0.73 mmol g(-1)) was observed as compared to the sulfate salt (q(max) = 0.53 mmol g(-1)) at the same pH. Adsorption and desorption curves pointed out a complete recovery of metal adsorbed in the Sargassum fluitans biomass, showing a reversibility of this process and indicating the potential of biosorption for lanthanum removal and recovery. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.
Resumo:
This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.
Resumo:
The SPPS methodology has continuously been investigated as a valuable model to monitor the solvation properties of polymeric materials. In this connection, the present work applied HRMAS-NMR spectroscopy to examine the dynamics of an aggregating peptide sequence attached to a resin core with varying peptide loading (up to 80%) and solvent system. Low and high substituted BHAR were used for assembling the VQAAIDYING sequence and some of its minor fragments. The HRMAS-NMR results were in agreement with the swelling of each resin, i.e. there was an improved resolution of resonance peaks in the better solvated conditions. Moreover, the peptide loading and the attached peptide sequence also affected the spectra. Strong peptide chain aggregation was observed mainly in highly peptide loaded resins when solvated in CDCl3. Conversely, due to the better swelling of these highly loaded resins in DMSO, improved NMR spectra were acquired in this polar aprotic solvent, thus enabling the detection of relevant sequence-dependent conformational alterations. The more prominent aggregation was displayed by the VQAAIDYING segment and not by any of its intermediary fragments and these findings were also corroborated by EPR studies of these peptide-resins labelled properly with an amino acid-type spin probe. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive business world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good with a single set of the parameters for all the curves. Further, the empirical data of the variation of the standard deviation of the growth rate with the size of the firm are in accordance with the present theory rather than a simple power law. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model, such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial states is discussed.
Resumo:
Solvent effects play a major role in controlling electron-transfer reactions. The solvent dynamics happens on a very high-dimensional surface, and this complex landscape is populated by a large number of minima. A critical problem is to understand the conditions under which the solvent dynamics can be represented by a single collective reaction coordinate. When this unidimensional representation is valid, one recovers the successful Marcus theory. In this study the approach used in a previous work [V. B. P. Leite and J. N. Onuchic; J. Phys. Chem. 100, 7680 (1996)] is extended to treat a more realistic solvent model, which includes energy correlation. The dynamics takes place in a smooth and well behaved landscape. The single shell of solvent molecules around a cavity is described by a two-dimensional system with periodic boundary conditions with nearest neighbor interaction. It is shown how the polarization-dependent effects can be inferred. The existence of phase transitions depends on a factor y proportional to the contribution from the two parameters of the model. For the present model, γ suggests the existence of weak kinetic phase transitions, which are used in the analysis of solvent effects in charge-transfer reactions. © 1999 American Institute of Physics.
Resumo:
The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (a), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently. © 1999 Elsevier Science Ltd. All rights reserved.