967 resultados para SW Guizhou Province
Resumo:
The recent increase in prices and production of quinoa have had important effects on the employment structures and livelihoods of rural communities in the Nor Lipez Province (Bolivia). The "quinoa boom" resulted in significant changes in household incomes and in gender roles in the context of increasing market integration. The nature of these changes however is not easy to grasp, as new official narratives on gender and on traditional systems of labour divisions and shared access to land have surfaced since the election of Evo Morales (2006) and the adoption of a new constitution (2009). Furthermore, rural employment is found to be much more diverse than the term suggests. Women have always participated in the production of quinoa when it was widely considered as a subsistence crop. Our research takes place in the Nor Lipez Province, Bolivia with exploratory studies that were conducted in January and February 2015 in 8 rural communities of quinoa producers. Preliminary results suggest positive effects for local women in that they managed to earn additional income which might have contributed to their empowerment. This article will present both preliminary results, challenges for gender-oriented research in Bolivia and the methodology aiming to capture changes at the individual, the household and the community level through a survey that will be conducted from September to November 2015 in 500 households.
Resumo:
Welsch (Projektbearbeiter): Aufruf an die Bevölkerung Böhmens, sich nicht vom "Kampf des Parteihasses" hinreißen zu lassen. Warnung vor dem Bürgerkrieg und Hinweis auf die gewährten Zugeständnisse und Freiheiten
Resumo:
The geologic history of the multi-ringed Argyre impact basin and surroundings has been reconstructed on the basis of geologic mapping and relative-age dating of rock materials and structures. The impact formed a primary basin, rim materials, and a complex basement structural fabric including faults and valleys that are radial and concentric about the primary basin, as well as structurally-controlled local basins. Since its formation, the basin has been a regional catchment for volatiles and sedimentary materials as well as a dominant influence on the flow of surface ice, debris flows, and groundwater through and over its basement structures. The basin is interpreted to have been occupied by lakes, including a possible Mediterranean-sized sea that formed in the aftermath of the Argyre impact event The hypothesized lakes froze and diminished through time, though liquid water may have remained beneath the ice cover and sedimentation may have continued for some time. At its deepest, the main Argyre lake may have taken more than a hundred thousand years to freeze to the bottom even absent any heat source besides the Sun, but with impact-induced hydrothermal heat, geothermal heat flow due to long-lived radioactivities in early martian history, and concentration of solutes in sub-ice brine, liquid water may have persisted beneath thick ice for many millions of years. Existence of an ice-covered sea perhaps was long enough for life to originate and evolve with gradually colder and more hypersaline conditions. The Argyre rock materials, diverse in origin and emplacement mechanisms, have been modified by impact, magmatic, eolian, fluvial, lacustrine, glacial, periglacial, alluvial, colluvial, and tectonic processes. Post-impact adjustment of part of the impact-generated basement structural fabric such as concentric faults is apparent. Distinct basin-stratigraphic units are interpreted to be linked to large-scale geologic activity far from the basin, including growth of the Tharsis magmatic-tectonic complex and the growth into southern middle latitudes of south polar ice sheets. Along with the migration of surface and sub-surface volatiles towards the central part of the primaiy basin, the substantial difference in elevation with respect to the surrounding highlands and Tharsis and the Thaumasia highlands result in the trapping of atmospheric volatiles within the basin in the form of fog and regional or local precipitation, even today. In addition, the impact event caused long-term (millions of years) hydrothermal activity, as well as deep-seated basement structures that have tapped the internal heat of Mars, as conduits, for far greater time, possibly even today. This possibility is raised by the observation of putative open-system pingos and nearby gullies that occur in linear depressions with accompanying systems of faults and fractures. Long-term water and heat energy enrichment, complemented by the interaction of the nutrient-enriched primordial crustal and mantle materials favorable to life excavated to the surface and near-surface environs through the Argyre impact event, has not only resulted in distinct geomorphology, but also makes the Argyre basin a potential site of exceptional astrobiological significance. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the present-day vegetation, stratigraphy and developmental history of the mire of Egelsee-Moor (Salzburg, Austria; 45°45′N, 13°8.5′E, 700 m a.s.l., 15 ha in area) since the early Late Glacial on the basis of 4 transects with 14 trial borings across the peatland. We present a vegetation map of the mire, a longitudinal section through the peat body based on six cores showing the peat types, overview macrofossil diagrams of six cores showing the local mire development and two pollen diagrams covering the Late Glacial and Holocene. The chronology of the diagrams depends on biostratigraphic dating for the Late Glacial and early Holocene and radiocarbon dating for the remaining Holocene. The northern part of the mire originated through terrestrialisation of nutrient-rich, mostly inundated fen and the southern part through paludification of wet soils. The very small lake of today was a reservoir until recently for providing water-power for timber rafting (‘Holztrift’). The mire vegetation today is a complex of forested parts (mainly planted Pinus sylvestris and Thuja occidentalis, but also spontaneous Picea abies, Betula pubescens and Frangula alnus), reed-lands (Phragmites) and litter meadows (Molinietum, Schoenetum, etc.). The central part has hummock-hollow complexes with regionally rare species of transitional mires (Drosera anglica, D. intermedia, Lycopodiella inundata, Scorpidium scorpioides, Sphagnum platyphyllum, S. subnitens). The results indicate that some of the mid-Holocene sediments may have been removed by the timber-rafting practices, and that water extraction from the hydrological catchment since 1967 has resulted in a partial shift of transitional mire to ombrotrophic bog. The latter potentially endangers the regionally rare species and was used as an argument to stop further water extraction.
Resumo:
Kopsch
Resumo:
Scan von Monochrom-Mikroform
Resumo:
Scan von Monochrom-Mikroform
Resumo:
anonym
Resumo:
Increasing numbers of children and adolescents are becoming vulnerable or orphaned due to the HIV/AIDS epidemic in Nyanza Province, Kenya. Research indicates food security remains a top concern for those caring for these children or adolescents. This study was a examined thinness, stunting, and perceptions about food availability in adolescents ages 10-17 years in Nyanza Province. No evidence was found suggesting orphaned adolescents experience greater amounts of stunting or thinness over non-orphaned adolescents in the province. Orphans did not perceive less available food in their households. Instead, predictors of thinness, stunting, or low perceptions of food availability included age, household facilities, perceptions of equal or unequal treatment in the household, and perceptions about the household's ability to provide them with basic needs. Findings suggest interventions aimed at decreasing malnutrition focus less on orphaned versus non-orphaned adolescents, but they should focus on adolescents made vulnerable due to lower socioeconomic status. ^
Resumo:
Widespread Lower Cretaceous magmatism occurred along the Indian-Australian/Antarctic margins, and in the juvenile Indian Ocean, during the rifting of eastern Gondwana. The formation of this magmatic province probably began around 120-130 Ma with the eruption of basalts on the Naturaliste Plateau and at Bunbury, western Australia. On the northeast margin of India, activity began around 117 Ma with the Rajmahal continental basalts and associated lamprophyre intrusions. The formation of the Kerguelen Plateau in the Indian Ocean began no later than 114 Ma. Ultramafic lamprophyres (alnoites) were emplaced in the Prince Charles Mountains near the Antarctic continental margin at ~ 110 Ma. These events are considered to be related to a major mantle plume, the remnant of which is situated beneath the region of Kerguelen and Heard islands at the present day. Geochemical data are presented for each of these volcanic suites and are indicative of complex interactions between asthenosphere-derived magmas and the continental lithosphere. Kerguelen Plateau basalts have Sr and Nd isotopic compositions lying outside the field for Indian Ocean mid-ocean ridge basalts (MORB) but, with the exception of Site 738 at the southern end of the plateau, within the range of more recent hotspot basalts from Kerguelen and Heard Islands. However, a number of the plateau tholeiites are characterized by lower 206Pb/204Pb ratios than are basalts from Kerguelen Island, and many also have anomalously high La/Nb ratios. These features suggest that the source of the Kerguelen Plateau basalts suffered contamination by components derived from the Gondwana continental lithosphere. An extreme expression of this lithospheric signature is shown by a tholeiite from Site 738, suggesting that the southernmost part of the Kerguelen Plateau may be underlain by continental crust. The Rajmahal tholeiites mostly fall into two distinct geochemical groups. Some Group I tholeiites have Sr and Nd isotopic compositions and incompatible element abundances, similar to Kerguelen Plateau tholeiites from Sites 749 and 750, indicating that the Kerguelen-Heard mantle plume may have directly furnished Rajmahal volcanism. However, their elevated 207Pb/204Pb ratios indicate that these magmas did not totally escape contamination by continental lithosphere. In contrast to the Group I tholeiites, significant contamination is suggested for Group II Rajmahal tholeiites, on the basis of incompatible element abundances and isotopic compositions. The Naturaliste Plateau and the Bunbury Basalt samples show varying degrees of enrichment in incompatible elements over normal MORB. The Naturaliste Plateau samples (and Bunbury Basalt) have high La/Nb ratios, a feature not inconsistent with the notion that the plateau may consist of stretched continental lithosphere, near the ocean-continent divide.
Resumo:
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circum Pacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200 °C, the ore is dominantly cinnabar with Hg-Sb-As±Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70 ±3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological ancl geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.