872 resultados para SUPERDENSE MATTER
Resumo:
Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.
Resumo:
The aim of this study was to evaluate dry matter yield and nutritional value of palisade grass (Brachiaria brizantha cv. Marandu) using nitrogen doses and sprinkler irrigation in two periods of the year, aiming at reducing seasonality of forage production. It was used a randomized block design in a split-plot scheme, with five doses of nitrogen (0, 50, 100, 150, and 200 kg/ha/cut), and the sub-plots were defined by the seasons of the year (wet and dry season), with and without irrigation. During the wet season, in the plots with and without irrigation, doses of 175 and 161 kg/ha/cut promoted the highest dry matter yields. During the dry season, 171 kg ha -1N with irrigation resulted in the highest dry matter yield. During the same season, there was no response to N fertilization in the lack of irrigation. Average contents of CP were 10% with and without irrigation. Contents of neutral detergent fiber decreased with nitrogen doses, while acid detergent fiber was not affected by fertilization. Plots under irrigation reached the maximal acid detergent fiber content at N dose of 60 kg ha -1. Irrigation promotes increase of 15% increase in dry matter yield and it increases contents of neutral detergent fiber. © 2010 Sociedade Brasileira de Zootecnia.
Resumo:
In the near future experiments will be able to produce charmed hadrons almost at rest in the interior of an atomic nucleus. One of the most exciting perspectives is the possibility of studying charmonium in a dense medium. In the present communication we present results of a study that explores the possibility that J/Ψ might be bound in a large nucleus through the excitation of intermediate states of D and D* mesons. We also present results of a recent prediction for the production of Λ̄ c -Λc + in proton-antiproton annihilation experiments. © 2010 American Institute of Physics.
Resumo:
We discuss two aspects of charmonium in medium. First, we present results of a recent study that compares the phenomenology of charmonium spectroscopy using smooth and sudden string breaking potentials. Next, we present results of a study that explores the possibility that J/ψ might be bound in a large nucleus through the excitation of a color singlet intermediate states of D and D* mesons with density masses. © 2010 American Institute of Physics.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
We show the results and discussions of the study of a possible suppression of the extragalactic neutrino flux during its propagation due to a nonstandard interaction with a candidate field to dark matter. In particular, we show the study of neutrino interaction with an ultra-light scalar field. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a mechanism to reduce the ultra-high energy neutrino flux. We calculate both the cases of non-self-conjugate as well as self-conjugate ultra-light dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms, as absorption during propagation, for the reduction of the neutrino flux [1], © Published under licence by IOP Publishing Ltd.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
We report on recent estimates of the J/Ψ mass shift in infinite nuclear matter and finite nuclei arising from in-medium D and D* meson loops. The density dependence of the J/Ψ mass shift is evaluated employing medium-modified D and D* meson masses derived within the quark-meson coupling model. Using a local density approximation, J/Ψ-nuclear bound state energies are calculated for a range of nuclei. We predict that J/Ψ-nuclear bound states should be observed with a clear signal in experiments, provided the J/Ψ meson is produced in recoilless kinematics. © Published under licence by IOP Publishing Ltd.
Resumo:
In this article, the authors aim to present a critical review of recent MRI studies addressing white matter (WM) abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI), by searching PubMed and reviewing MRI studies evaluating subjects with AD or MCI using WM volumetric methods, diffusion tensor imaging and assessment of WM hyperintensities. Studies have found that, compared with healthy controls, AD and MCI samples display WM volumetric reductions and diffusion tensor imaging findings suggestive of reduced WM integrity. These changes affect complex networks relevant to episodic memory and other cognitive processes, including fiber connections that directly link medial temporal structures and the corpus callosum. Abnormalities in cortico-cortical and cortico-subcortical WM interconnections are associated with an increased risk of progression from MCI to dementia. It can be concluded that WM abnormalities are detectable in early stages of AD and MCI. Degeneration of WM networks causes disconnection among neural cells and the degree of such changes is related to cognitive decline. © 2013 2013 Expert Reviews Ltd.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.
Resumo:
Pharmacological manipulation of TRPV1 (Transient Receptor Potential Vanilloid type-1) receptors has been emerging as a novel target in the investigation of anxiety states. Here, we attempt to show the role played by the TRPV1 receptors within the dorsal periaqueductal gray matter (dPAG), a midbrain structure strongly involved in the modulation of anxiety. Anxiety was assessed by recording spatiotemporal [percent open arm entries (%OE) and percent open arm time (%OT)] and ethological [e.g., head dipping (HD), stretched-attend postures (SAP)] measures in mice exposed to the elevated plus-maze (EPM). Mice received an intra-dPAG injection of the TRPV1 agonist capsaicin (0, 0.01, 0.1 or 1.0. nmol/0.2. μL; Experiment 1) or antagonist capsazepine (0, 10, 30 or 60. nmol/0.2. μL; Experiment 2), or combined injections of capsazepine (30. nmol) and capsaicin (1.0. nmol) (Experiment 3), and were exposed to the EPM to record spatiotemporal and ethological measures. While capsaicin produced an anxiogenic-like effect (it reduced %OE and %OT and frequency of SAP and HD in the open arms), capsazepine did not change any behavior in the EPM. However, when injected before capsaicin (1.0. nmol), intra-dPAG capsazepine (30. nmol-a dose devoid of intrinsic effects) antagonized completely the anxiogenic-like effect of the TRPV1 agonist. These results suggest that the anxiogenic-like effect produced by capsaicin is primarily due to TRPV1 activation within the dPAG in mice, but that dPAG TRPV1 receptors do not exert a tonic control over defensive behavior in mice exposed to the EPM. © 2013 Elsevier B.V.
Resumo:
Growing cover crops in systems under no tillage affects different pools of soil organic matter, and eventually soil physical attributes are modified. The objective of this study was to evaluate changes in soil organic matter and their relationship with soil physical attributes as affected by plant species grown in rotation with soybean [Glycine max (L.) Merr.] under no-till for 3 yr. Crop rotations included grain sorghum [Sorghum bicolor (L.) Moench], ruzigrass [Urochloa ruziziensis (R. Germ, and CM. Evard) Crins] and sorghum mixed with ruzigrass, all grown in fall/winter, followed by pearl millet [Pennisetum americanum (L.) Leeke], sunn hemp (Crotalaria juncea L.) and sorghum-sudangrass [S. bicolor × S. sudanense (Piper) Stapf] grown during the spring, plus a fallow check plot. Soybean was grown as the summer crop. Millet and sorghum-sudangrass cropped in spring showed higher root and shoot production as spring cropping. In fall/winter, sorghum mixed with ruzigrass yielded higher phytomass compared with sole cropping. Soil physical attributes and organic matter fractioning were positively affected by cropping millet and sorghum-sudangrass whereas intermediate effects were observed after sunn hemp. Maintaining fallow in spring had negative effects on soil organic matter and physical properties. Ruzigrass and sorghum mixed with ruzigrass cropped in fall/winter resulted in better soil quality. Spring cover crops were more efficient in changing soil bulk density, porosity, and aggregates down to 0 to 10 cm; on the other hand, fall/winter cropping showed significant effects on bulk density in the uppermost soil layer. Total C levels in soil were increased after a 3-yr rotation period due to poor initial physical conditions. Fractions of particulate organic C, microbial C, and C in macroaggregates were the most affected by crop rotations, and showed high relation with improved soil physical attributes (porosity, density, and aggregates larger than 2 mm). © Soil Science Society of America, All rights reserved.