952 resultados para SUBTROPICAL WATERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen and carbon isotopic composition has been measured for numerous Paleogene planktonic foraminifer species from Maud Rise, Weddell Sea (ODP Sites 689 and 690), the first such results from the Antarctic. The results provide information about large-scale changes in the evolution of temperatures, seasonally, and structure of the upper water column prior to the development of a significant Antarctic cryosphere. The early Paleocene was marked by cooler surface-water conditions compared to the Cretaceous and possibly a less well developed thermocline. The late Paleocene and early Eocene saw the expansion of the thermocline as Antarctic surface waters became warm-temperate to subtropical. The late Paleocene to early Eocene thermal maximum was punctuated by two brief excursions during which time the entire Antarctic water column warmed and the meridional temperature gradient was reduced. The first of these excursions occurred at the Paleocene/Eocene boundary, in association with a major extinction in deep sea benthic foraminifers. The second excursion occurred within the early Eocene at ~54.0 Ma. These excursions are of global importance and represent the warmest intervals of the entire Cenozoic. The excursions were associated with fundamental changes in deep-water circulation and global heat transport. The thermal maximum of the early Eocene ended with the initiation of a long-term cooling trend at 52.0 Ma. This cooling trend was associated with reduced seasonality, and diminished structure and/or duration of the seasonal thermocline. The cooling trend was punctuated by three major cooling steps at 43.0, 40.0, and -36.0 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 177 of the Ocean Drilling Program (ODP), well-preserved Middle Miocene to Pleistocene carbonate-rich sediment records were recovered on a north-south transect through the south-eastern Atlantic sector of the Southern Ocean at Site 1088 on the Agulhas Ridge and Site 1092 on Meteor Rise. Both sites were dominated by the deposition of calcareous nannofossil oozes through the Miocene, indicating low biological productivity in warm to temperate surface waters. A continuous increase in the proportions of foraminifera since the latest Miocene (6.5 Ma) points to enhanced nutrient supply, possibly related to the global 'biogenic bloom' event across the Miocene-Pliocene boundary. Since the Late Pliocene, different styles of biological productivity developed between the sites. Enhanced deposition of biosiliceous constituents at the southern Site 1092, particularly in the Early Pleistocene, is consistent with the formation of the Circum-Antarctic Opal Belt since 2.5 Ma in a setting near the Polar Front, whereas carbonate deposition still prevailed at the northern Site 1088 situated near the Subtropical Front. Clay-mineral tracers of water-mass advection together with the pattern of sedimentation rates and hiatuses reflect distinct pulses in the development of regional ocean circulation between 14 and 12 Ma, around 8 Ma and since 2.8 Ma. These pulses can be related to Antarctic ice-sheet extension that mediates the production and flow of southern source water, and stepwise increases in North Atlantic Deep Water production that drives global conveyor circulation. At Site 1088, illite chemistry and silt/clay ratios of the terrigenous sediment fraction reflect the history of terrestrial climate in southern Africa, with humid conditions prior to the Early Late Miocene (9.7 Ma), followed by a dry episode until 7.7 Ma. The latest Miocene and Early Pliocene were characterized by a humid episode until modern aridity was established in the Late Pliocene between 4.0 and 2.8 Ma. These climate changes were related to the latitudinal migration of climate belts in response to tectonically caused reorganizations in atmospheric and ocean circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total organic carbon (TOC) samples were collected at 6 stations spaced ~800 km apart in the eastern South Atlantic, from the Equator to 45°S along 9°W. Analyses were performed by high temperature catalytic oxidation (HTCO) in the base laboratory. Despite the complex advection and mixing patterns of North Atlantic and Antarctic waters with extremely different degrees of ventilation, TOC levels below 500 m are quasi-constant at 55±3 µmol C/l, pointing to the refractory nature of deep-water TOC. On the other hand, a TOC excess from 25 to 38 g C/m**2 is observed in the upper 100 m of the permanently stratified nutrient-depleted Equatorial, Subequatorial and Subtropical upper ocean, where vertical turbulent diffusion is largely prevented. Conversely, TOC levels in the nutrient-rich upper layer of the Subantarctic Front only exceeds 9 g C/m**2 the deep-water baseline. As much as 70% of the TOC variability in the upper 500 m is due to simple mixing of reactive TOC formed in the surface layer and refractory TOC in deep ocean waters, with a minor contribution (13%) to oxygen consumption in the prominent subsurface AOU maximum at 200-400 m depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on isotopic composition of interstitial and bottom waters collected in an area of gas hydrate occurrence in the Sea of Okhotsk are presented. Investigations indicate that heavy isotopes of oxygen and hydrogen are used in generation of gas hydrate, so that isotopic composition of its water of constitution is: d18O = +1.9 per mil, d2H = +23 per mil (relative to SMOW). Production of authigenic carbonates results in isotopic exchange with interstitial water, which in turn alters its isotopic composition by an increase in d18O. Bottom waters are isotopically light relative to the SMOW standard and to the average isotopic composition of interstitial waters in the area of gas hydrate occurrence in study.