981 resultados para STRUCTURAL BRAIN ABNORMALITIES
Resumo:
Glucose loading of rats made thiamin deficient by dietary deprivation of thiamin and the administration of pyrithiamin (40 mug/100 g, i.p.) precipitates an acute neuropathy, a model of Wernicke's encephalopathy in man (Zimitat and Nixon, Metab. Brain Dis. 1999;14:1-20). Immunohistochemical detection of Fos proteins was used as a marker to identify neuronal populations in the thiamin-deficient rat brain affected by glucose loading. As thiamin deficiency progressed, the extent and intensity of Fos-Like immunoreactivity (FLI) in brain structures typically affected by thiamin deficiency (the thalamus, mammillary bodies, inferior colliculus, vestibular nucleus and inferior olives) were markedly increased when compared to thiamin-replete controls. Glucose loading for 1-3 days further increased the intensity of FLI in these same regions, consistent with a dependence of Fos expression on carbohydrate metabolism as well as on thiamin deficiency. The timed acute changes that follow a bolus glucose load administered to thiamin-deficient animals may provide a sequential account of events in the pathogenesis of brain damage in this model of Wernicke's encephalopathy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.
Resumo:
Objective: To investigate the relation between irrational schematic beliefs and psychological distress in caregivers of persons with traumatic brain injury (TBI). Design: Cross-sectional mail survey. Participants: One hundred sixteen caregivers of persons with TBI living in the Australian states of Victoria and Queensland who were members of community support groups and brain injury associations. Measures: The Irrational Beliefs Inventory, Brief Symptom Inventory, income satisfaction, degree of personality and behavior change in the TBI individual, and injury severity. Results: Hierarchical regression analyses showed that after controlling for the effects of characteristics of the caregiving situation and the individual with TBI, greater adherence to irrational beliefs was related to higher levels of global psychological distress. Specifically, irrational beliefs related to Worrying were associated with all areas of psychological distress. Conclusion: Results support the cognitive theory proposal that irrational beliefs play an important role in the adaptation to TBI caregiving. Findings suggest the inclusion of cognitive therapy strategies in interventions for caregivers.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
The aim of this research was to examine the nature and order of recovery of orientation and memory functioning during Post-Traumatic Amnesia (PTA) in relation to injury severity and PTA duration. The Westmead PTA Scale was used across consecutive testing days to assess the recovery of orientation and memory during PTA in 113 patients. Two new indices were examined: a Consistency-of-Recovery and a Duration-to-Recovery index. a predictable order of recovery was observed during PTA: orientation-to-person recovered sooner and more consistently than the following cluster; orientation-to-time, orientation-to-place, and the ability to remember a face and name. However, the type of memory functioning required for the recall face and name task recovered more consistently than that required for memorizing three pictures. An important overall finding was that the order-of-recovery'' of orientation and memory functioning was dependent upon both the elapsed days since injury, and the consistency of recovery. The newly developed indices were shown to be a valuable means of accounting for differences between groups in the elapsed days to recovery of orientation and memory. These indices also clearly increase the clinical utility of the Westmead PTA Scale and supply an objective means of charting (and potentially predicting) patients' recovery on the different components of orientation and memory throughout their period of hospitalization.
Resumo:
In humans, hydromorphone (HMOR) is metabolised principally by conjugation with glucuronic acid to form hydromorphone-3-glucuronide (H3G), a close structural analogue of morphine-3-glucuronide (M3G), the major metabolite of morphine. In a previous study we described the biochemical synthesis of H3G together with a preliminary evaluation of its pharmacology which revealed that it is a neuro-excitant in rats in a manner analogous to M3G. Thus the aims of the current study were to quantify the neuro-excitatory behaviours evoked by intracerebroventricular (icv) H3G in the rat and to define its potency relative to M3G. Groups of adult male Sprague-Dawley rats received icy injections (1 muL) of H3G (1 - 3 mug), M3G (2 - 7 mug) or vehicle via a stainless steel guide cannula that had been implanted stereotaxically seven days prior to drug administration. Behavioural excitation was monitored by scoring fifteen different behaviours (myoclonic jerks, chewing, wet-dog-shakes, rearing, tonic-clonic-convulsions, explosive motor behaviour, grooming, exploring, general activity, eating, staring, ataxia, righting reflex, body posture, touch evoked agitation) immediately prior to icy injection and at the following post-dosing times: 5, 15, 25, 35, 50, 65 and 80 min. H3G produced dose-dependent behavioural excitation in a manner analogous to that reported previously for M3G by our laboratory and reproduced herein. H3G was found to be approximately 2.5-fold more potent than M3G, such that the mean (+/- S.D.) ED50 values were 2.3 (+/- 0.1) mug and 6.1 (+/- 0.6) mug respectively. Thus, our data clearly imply that if H3G crosses the BBB with equivalent efficiency to M3G, then the myoclonus, allodynia and seizures observed in some patients dosed chronically with large systemic doses of HMOR, are almost certainly due to the accumulation of sufficient H3G in the central nervous system, to evoke behavioural excitation. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry. The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes. The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF-CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes. (C), 2001 Elsevier Science B.V All rights reserved.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
As individuals gain expertise in a chosen field they can begin to conceptualize how what they know can be applied more broadly, to new populations and situations, or to increase desirable outcomes. Judd's book does just this. It takes our current understanding of the etiology, course, and sequelae of brain injuries, combines this with established psychotherapy and rehabilitation techniques, and expands these into a cogent model of what Judd calls “neuropsychotherapy.” Simply put, neuropsychotherapy attempts to address the cognitive, emotional and behavioral changes in brain-injured persons, changes that may go undiagnosed, misdiagnosed, or untreated.