878 resultados para SMEAR LAYER REMOVAL
Resumo:
This paper describes advances in ground-based thermodynamic profiling of the lower troposphere through sensor synergy. The well-documented integrated profiling technique (IPT), which uses a microwave profiler, a cloud radar, and a ceilometer to simultaneously retrieve vertical profiles of temperature, humidity, and liquid water content (LWC) of nonprecipitating clouds, is further developed toward an enhanced performance in the boundary layer and lower troposphere. For a more accurate temperature profile, this is accomplished by including an elevation scanning measurement modus of the microwave profiler. Height-dependent RMS accuracies of temperature (humidity) ranging from 0.3 to 0.9 K (0.5–0.8 g m−3) in the boundary layer are derived from retrieval simulations and confirmed experimentally with measurements at distinct heights taken during the 2005 International Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH) of the German Weather Service. Temperature inversions, especially of the lower boundary layer, are captured in a very satisfactory way by using the elevation scanning mode. To improve the quality of liquid water content measurements in clouds the authors incorporate a sophisticated target classification scheme developed within the European cloud observing network CloudNet. It allows the detailed discrimination between different types of backscatterers detected by cloud radar and ceilometer. Finally, to allow IPT application also to drizzling cases, an LWC profiling method is integrated. This technique classifies the detected hydrometeors into three different size classes using certain thresholds determined by radar reflectivity and/or ceilometer extinction profiles. By inclusion into IPT, the retrieved profiles are made consistent with the measurements of the microwave profiler and an LWC a priori profile. Results of IPT application to 13 days of the LAUNCH campaign are analyzed, and the importance of integrated profiling for model evaluation is underlined.
An evaluation of boundary-layer depth, inversion and entrainment parameters by large-eddy simulation
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.
Resumo:
A solution of the lidar equation is discussed, that permits combining backscatter and depolarization measurements to quantitatively distinguish two different aerosol types with different depolarization properties. The method has been successfully applied to simultaneous observations of volcanic ash and boundary layer aerosol obtained in Exeter, United Kingdom, on 16 and 18 April 2010, permitting the contribution of the two aerosols to be quantified separately. First a subset of the atmospheric profiles is used where the two aerosol types belong to clearly distinguished layers, for the purpose of characterizing the ash in terms of lidar ratio and depolarization. These quantities are then used in a three‐component atmosphere solution scheme of the lidar equation applied to the full data set, in order to compute the optical properties of both aerosol types separately. On 16 April a thin ash layer, 100–400 m deep, is observed (average and maximum estimated ash optical depth: 0.11 and 0.2); it descends from ∼2800 to ∼1400 m altitude over a 6‐hour period. On 18 April a double ash layer, ∼400 m deep, is observed just above the morning boundary layer (average and maximum estimated ash optical depth: 0.19 and 0.27). In the afternoon the ash is entrained into the boundary layer, and the latter reaches a depth of ∼1800 m (average and maximum estimated ash optical depth: 0.1 and 0.15). An additional ash layer, with a very small optical depth, was observed on 18 April at an altitude of 3500–4000 m. By converting the lidar optical measurements using estimates of volcanic ash specific extinction, derived from other works, the observations seem to suggest approximate peak ash concentrations of ∼1500 and ∼1000 mg/m3,respectively, on the two observations dates.
Resumo:
This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer. There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux. A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of continental boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze cloud-aerosol relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.
Resumo:
The assimilation of observations with a forecast is often heavily influenced by the description of the error covariances associated with the forecast. When a temperature inversion is present at the top of the boundary layer (BL), a significant part of the forecast error may be described as a vertical positional error (as opposed to amplitude error normally dealt with in data assimilation). In these cases, failing to account for positional error explicitly is shown t o r esult in an analysis for which the inversion structure is erroneously weakened and degraded. In this article, a new assimilation scheme is proposed to explicitly include the positional error associated with an inversion. This is done through the introduction of an extra control variable to allow position errors in the a priori to be treated simultaneously with the usual amplitude errors. This new scheme, referred to as the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational assimilation of temperature. The floating BL scheme is tested with a series of idealised experiments a nd with real data from radiosondes. For each idealised experiment, the floating BL scheme gives an analysis which has the inversion structure and position in agreement with the truth, and outperforms the a ssimilation which accounts only for forecast a mplitude error. When the floating BL scheme is used to assimilate a l arge sample of radiosonde data, its ability to give an analysis with an inversion height in better agreement with that observed is confirmed. However, it is found that the use of Gaussian statistics is an inappropriate description o f t he error statistics o f t he extra c ontrol variable. This problem is alleviated by incorporating a non-Gaussian description of the new control variable in the new scheme. Anticipated challenges in implementing the scheme operationally are discussed towards the end of the article.
Resumo:
Results from an idealized three-dimensional baroclinic life-cycle model are interpreted in a potential vorticity (PV) framework to identify the physical mechanisms by which frictional processes acting in the atmospheric boundary layer modify and reduce the baroclinic development of a midlatitude storm. Considering a life cycle where the only non-conservative process acting is boundary-layer friction, the rate of change of depth-averaged PV within the boundary layer is governed by frictional generation of PV and the flux of PV into the free troposphere. Frictional generation of PV has two contributions: Ekman generation, which is directly analogous to the well-known Ekman-pumping mechanism for barotropic vortices, and baroclinic generation, which depends on the turning of the wind in the boundary layer and low-level horizontal temperature gradients. It is usually assumed, at least implicitly, that an Ekman process of negative PV generation is the mechanism whereby friction reduces the strength and growth rates of baroclinic systems. Although there is evidence for this mechanism, it is shown that baroclinic generation of PV dominates, producing positive PV anomalies downstream of the low centre, close to developing warm and cold fronts. These PV anomalies are advected by the large-scale warm conveyor belt flow upwards and polewards, fluxed into the troposphere near the warm front, and then advected westwards relative to the system. The result is a thin band of positive PV in the lower troposphere above the surface low centre. This PV is shown to be associated with a positive static stability anomaly, which Rossby edge wave theory suggests reduces the strength of the coupling between the upper- and lower-level PV anomalies, thereby reducing the rate of baroclinic development. This mechanism, which is a result of the baroclinic dynamics in the frontal regions, is in marked contrast with simple barotropic spin-down ideas. Finally we note the implications of these frictionally generated PV anomalies for cyclone forecasting.
Resumo:
The layer-by-layer deposition of polymers onto surfaces allows the fabrication of multilayered materials for a wide range of applications, from drug delivery to biosensors. This work describes the analysis of complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions using Biacore, a surface plasmon resonance analytical technique, traditionally used to examine biological interactions. This technique characterized the layer-by-layer deposition of these polymers on the surface of a Biacore sensor chip. The results were subsequently used to optimize the experimental conditions for sequential layer deposition on glass slides. The role of the solution pH and poly(acrylic acid) molecular weight on the formation of interpolymer multilayered coatings was researched, and showed that the optimal deposition of the polymer complexes was achieved at pHs ≤2.5 with a poly(acrylic acid) molecular weight of 450 kDa.
Resumo:
The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada’s SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1–1.5 km above the thermal tropopause in the subtropics to 3–4 km (2.5–3.5 km) in the north (south) polar region, implying somewhat weaker tropospherestratosphere- transport in the Southern Hemisphere. The ExTL bottom extends ~1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ~345 K (1.5 km or ~335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.