1000 resultados para São Mateus - Ma
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents a systematic study of high-transverse-momentum charged-di-hadron correlations at small azimuthal pair separation Delta phi in d+Au and central Au+Au collisions at s(NN)=200 GeV. Significant correlated yield for pairs with large longitudinal separation Delta eta is observed in central Au+Au collisions, in contrast to d+Au collisions. The associated yield distribution in Delta eta x Delta phi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component that is narrow in Delta phi and depends only weakly on Delta eta, the ""ridge."" Using two systematically independent determinations of the background normalization and shape, finite ridge yield is found to persist for trigger p(t)>6 GeV/c, indicating that it is correlated with jet production. The transverse-momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p(t)< 4 GeV/c).
Resumo:
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Resumo:
The longitudinal spin transfer, D(LL), from high energy polarized protons to Lambda and Lambda hyperons has been measured for the first time in proton-proton collisions at s=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. The measurements cover pseudorapidity, eta, in the range |eta|< 1.2 and transverse momenta, p(T), up to 4 GeV/c. The longitudinal spin transfer is found to be D(LL)=-0.03 +/- 0.13(stat)+/- 0.04(syst) for inclusive Lambda and D(LL)=-0.12 +/- 0.08(stat)+/- 0.03(syst) for inclusive Lambda hyperons with <
Resumo:
Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at root s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.
Resumo:
The results of midrapidity (0 < y < 0.8) neutral pion spectra over an extended transverse momentum range (1 < p(T) < 12 GeV/c) in root s(NN) = 200 GeV Au + Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter or by the Time Projection Chamber via tracking of conversion electron-positron pairs. Our measurements are compared to previously published pi(+/-) and pi(0) results. The nuclear modification factors R(CP) and R(AA) of pi(0) are also presented as a function of p(T). In the most central Au + Au collisions, the binary collision scaled pi(0) yield at high p(T) is suppressed by a factor of about 5 compared to the expectation from the yield of p + p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of J/psi e(+) e(-) at midrapidity and high transverse momentum (pT > 5 GeV/c) in p + p and central Cu + Cu collisions at root s(NN) = 200 GeV. The inclusive J/psi production cross section for Cu + Cu collisions is found to be consistent at high p(T) with the binary collision-scaled cross section for p + p collisions. At a confidence level of 97%, this is in contrast to a suppression of J/psi production observed at lower p(T). Azimuthal correlations of J/psi with charged hadrons in p + p collisions provide an estimate of the contribution of B-hadron decays to J/psi production of 13% +/- 5%.
Resumo:
We report K/pi fluctuations from Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. K/pi fluctuations in central collisions show little dependence on incident energy and are on the same order as those from NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at s(NN)=12.3 and 17.3 GeV. We report results for the collision centrality dependence of K/pi fluctuations and results for charge-separated fluctuations. We observe that the K/pi fluctuations scale with the charged particle multiplicity density.
Resumo:
We present a systematic analysis of two-pion interferometry in Au+Au collisions at s(NN)=62.4 GeV and Cu+Cu collisions at s(NN)=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
Resumo:
We report the measurement of charged D* mesons in inclusive jets produced in proton-proton collisions at a center-of-mass energy root s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider. For D* mesons with fractional momenta 0.2< z< 0.5 in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be N(D*(+) + D*(-))/N(jet) = 0.015 +/- 0.008(stat) +/- 0.007(sys). This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
Resumo:
In ultraperipheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a rho(0). The rho(0) production occurs in two well-separated (median impact parameters of 20 and 40 F for the cases considered here) nuclei, so the system forms a two-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing rho(0) production. Since the rho(0) decays before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled nonlocal wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is 87%+/- 5%(stat.)+/- 8%(syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors of 23% at the 90% confidence level.
Resumo:
We present the first measurements of the rho(770)(0),K(*)(892),Delta(1232)(++),Sigma(1385), and Lambda(1520) resonances in d+Au collisions at
Resumo:
The STAR Collaboration at the BNL Relativistic Heavy Ion Collider has measured two-pion correlation functions from p + p collisions at root s = 200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong nonfemtoscopic effects. Our results are put into the context of the world data set of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p + p and heavy ion collisions, under identical analysis and detector conditions.
Resumo:
A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.
Resumo:
The Brazilian Synchrotron Light Laboratory [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP, Brazil] is the first commissioned synchrotron light source in the southern hemisphere. The first wiggler macromolecular crystallography beamline (MX2) at the LNLS has been recently constructed and brought into operation. Here the technical design, experimental set-up, parameters of the beamline and the first experimental results obtained at MX2 are described. The beamline operates on a 2.0 T hybrid 30-pole wiggler, and its optical layout includes collimating mirror, Si( 111) double-crystal monochromator and toroidal bendable mirror. The measured flux density at the sample position at 8.7 eV reaches 4.8 x 10(11) photons s(-1) mm(-2) (100 mA)(-1). The beamline is equipped with a MarResearch Desktop Beamline Goniostat (MarDTB) and 3 x 3 MarMosaic225 CCD detector, and is controlled by a customized version of the Blu-Ice software. A description of the first X-ray diffraction data sets collected at the MX2 LNLS beamline and used for macromolecular crystal structure solution is also provided.
Resumo:
The pre-Mesozoic geodynamic evolution of SW Iberia has been investigated on the basis of detailed structural analysis, isotope dating, and petrologic study of high-pressure (HP) rocks, revealing the superposition of several tectonometamorphic events: (1) An HP event older than circa 358 Ma is recorded in basic rocks preserved inside marbles, which suggests subduction of a continental margin. The deformation associated with this stage is recorded by a refractory graphite fabric and noncoaxial mesoscopic structures found within the host metasediments. The sense of shear is top to south, revealing thrusting synthetic with subduction (underthrusting) to the north. (2) Recrystallization before circa 358 Ma is due to a regional-scale thermal episode and magmatism. (3) Noncoaxial deformation with top to north sense of shear in northward dipping large-scale shear zones is associated with pervasive hydration and metamorphic retrogression under mostly greenschist facies. This indicates exhumation by normal faulting in a detachment zone confined to the top to north and north dipping shear zones during postorogenic collapse soon after 358 Ma ago (inversion of earlier top to south thrusts). (4) Static recrystallization at circa 318 Ma is due to regional-scale granitic intrusions. Citation: Rosas, F. M., F. O. Marques, M. Ballevre, and C. Tassinari (2008), Geodynamic evolution of the SW Variscides: Orogenic collapse shown by new tectonometamorphic and isotopic data from western Ossa-Morena Zone, SW Iberia, Tectonics, 27, TC6008, doi:10.1029/2008TC002333.