771 resultados para Rutschungen, Massenbewegungen, Gefahrenanalyse, Risikoanalyse, Fuzzy-Logik


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is an important poultry meat export country, and large parts of its destination are countries with specific rearing restrictions related to broiler s welfare. One of the aerial pollutants mostly found in high concentrations in closed poultry housing environment is ammonia. There are evidences that broilers welfare may be compromised by the continuous exposition to this pollutant in rearing housing. This research aimed to estimate broilers welfare reared under specific thermal environmental attributes and bird s density, as function of the ammonia concentration and light intensity inside the housing environment using the Fuzzy Theory. Results showed that the best welfare value (0.89 in the scale: 0-1) approximately 90% of the ideal was found in the conditions that associated the ideal thermal environment, with bird s density between 13-15 birds m-2, with values of the ammonia concentration in the environment below 5 ppm, and light intensity near 1 lx. Using the predictive method it was possible to estimate broilers welfare with relation to the ammonia concentration and light intensity in the housing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The swine breeder rearing environment directly affects the animal's performance. This research had the objective of developing a thermal, aerial and acoustic environmental evaluation pattern for boar housing. The experiment was carried on a commercial swine farm in Salto County -SP, Brazil. Thermal, aerial and acoustic environment data of rearing conditions were registered. Data were statistically analyzed using as threshold the ideal housing environment that leads to animal welfare. Results showed that ambient temperature was around 70% beyond normal range, while air relative humidity, air speed and gases concentration were within threshold values. Noise level data besides being within normal range did not present large variation. In relation to the fuzzy logic analysis it was possible to build up a scenario which indicated that the best welfare indexes to male swine breeders happens when thermal comfort index are close to 80%, and noise level is lower than 40 dB. In the other hand the worst welfare index occur in the sector where the thermal comfort values are below 40% at the same time that the noise level is higher than 80 dB leading to inadequate conditions to the animal, and may directly interfere in the reproduction system performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic models of sex and caste determination in eusocial stingless bees suggest specific patterns of male, worker and gyne cell distribution in the brood comb. Conflict between queen and laying workers over male parentage and center-periphery gradients of conditions, such as food and temperature, could also contribute to non-random spatial configuration. We converted the positions of the hexagonal cells in a brood comb to Cartesian coordinates, labeled by sex or caste of the individuals inside. To detect and locate clustered patterns, the mapped brood combs were evaluated by indexes of dispersion (MMC, mean distance of cells of a given category from their centroid) and eccentricity (DMB, distance between this centroid and the overall brood comb centroid) that we developed. After randomizing the labels and recalculating the indexes, we calculated probabilities that the original values had been generated by chance. We created sets of binary brood combs in which males were aggregated, regularly or randomly distributed among females. These stylized maps were used to describe the power of MMC and DMB, and they were applied to evaluate the male distribution in the sampled Nannotrigona testaceicornis brood combs. MMC was very sensitive to slight deviations from a perfectly rounded clump; DMB detected any asymmetry in the location of these compact to fuzzy clusters. Six of the 82 brood combs of N. testaceicornis that we analyzed had more than nine males, distributed according to variations in spatial patterns, as indicated by the two indexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general objective of this study was to evaluate the ordered weighted averaging (OWA) method, integrated to a geographic information systems (GIS), in the definition of priority areas for forest conservation in a Brazilian river basin, aiming at to increase the regional biodiversity. We demonstrated how one could obtain a range of alternatives by applying OWA, including the one obtained by the weighted linear combination method and, also the use of the analytic hierarchy process (AHP) to structure the decision problem and to assign the importance to each criterion. The criteria considered important to this study were: proximity to forest patches; proximity among forest patches with larger core area; proximity to surface water; distance from roads: distance from urban areas; and vulnerability to erosion. OWA requires two sets of criteria weights: the weights of relative criterion importance and the order weights. Thus, Participatory Technique was used to define the criteria set and the criterion importance (based in AHP). In order to obtain the second set of weights we considered the influence of each criterion, as well as the importance of each one, on this decision-making process. The sensitivity analysis indicated coherence among the criterion importance weights, the order weights, and the solution. According to this analysis, only the proximity to surface water criterion is not important to identify priority areas for forest conservation. Finally, we can highlight that the OWA method is flexible, easy to be implemented and, mainly, it facilitates a better understanding of the alternative land-use suitability patterns. (C) 2008 Elsevier B.V. All rights reserved.