847 resultados para Robotic manipulators
Resumo:
Currently, more and more processing activities within companies are seen as projects. Project management, as a theory, is well developed and is accepted today in the market as a required competency for organizations. Various methods and techniques have been developed covering all aspects of a project, from conception to final delivery of the products produced by the same. The overall objective of the study is to report the experience of developing the project planning for the machine safety adequacy in robotic cells pallet manufacturers, demonstrating the importance of knowledge in the area of project management for the productive sector, and focusing on the difficulties encountered in particular project. Thus was developed the scope management by a team composed of different areas of engineering, and implementation strategy of the project was chosen from the tool BVOA, with the possible subsequent definition of the project schedule. Furthermore, the risk planning was analyzed using FMECA tool that predicts and mitigates potential failures. It is concluded that the constant and direct relationship between the different stakeholders generates more efficient results, reaching the demands of the project. The definition of alternatives for implementation enabled the viability of the project, and the study of failures was positive to enrich the analysis of planning
Resumo:
Acceleration is a key parameter for engineering and is becoming increasingly important because of the need for companies to become more competitive in the market. Both applying new technologies to their products and optimizing their process lines with predictive maintenance and robotic automation. This study aims to analyze the quality of the signals obtained from a capacitive accelerometer. To do that a test rig was mounted, which consist of a shaker, fed by a signal generator, a linear potentiometer and a capacitive accelerometer; for the signal acquisition was used a acquisition board and the Labview software, in order to integrate twice the signal from the accelerometer and compare it with the sign of the potentiometer. This work also demonstrates the impact of acquired signal processing as well as techniques of pre and post processing of signal via software GNU/Octave
Resumo:
Staphylococcus is one of the more important causes of the called Foodborne Disease(FD), being that from the 40 species described from genus, the more important is Staphylococcus aureus. During years believed that the S. aureus was the only specie from genus able to produce enterotoxins, responsable for the clinical frame in humans, but latest studies report the isolation of other species both positive coagulase (PC) as negative with enterotoxigenic potential. The symptoms of this intoxication appear after a short period of incubation (2-6 hours) and usually characterized by nausea, vomits, abdominal ache, diarrhea, and rarely is fatal. For the toxin to be formed in food is necessary that bacteria population to be at least 105 UFC/g, being that such toxins characterized by presenting great resistance front of gastrointestinal proteases and of homemade termical treatment. Among the main foods that might carry the microorganism, the milk and its derivatives have highlights. The contamination of the product might happen as from the milk from cows with clinical and/or subclinical mastitis, as the Staphylococcus genus is one of the main agents etiologic from this disease, equipments utensils badly sanitized equipments and utensils and from the manipulators. The control of these factors configures as fundamental condition for the achievement of a safe, quality product, which doesn’t offer risk to the consumers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Automated Production Systems Development involves aspects concerning the integration of technological components that exist on the market, such as: Programmable Logic Controllers (PLC), robot manipulators, various sensors and actuators, image processing systems, communication networks and collaborative supervisory systems; all integrated into a single application. This paper proposes an automated platform for experimentation, implemented through typical architecture for Automated Production Systems, which integrates the technological components described above, in order to allow researchers and students to carry out practical laboratory activities. These activities will complement the theoretical knowledge acquired by the students in the classroom, thus improving their training and professional skills. A platform designed using this generic structure will allow users to work within an educational environment that reflects most aspects found in Industrial Automated Manufacturing Systems, such as technology integration, communication networks, process control and production management. In addition, this platform offers the possibility complete automated process of control and supervision via remote connection through the internet (WebLab), enabling knowledge sharing between different teaching and research groups.
Resumo:
This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.
Resumo:
We evaluated the diagnostic quality of first-trimester ultrasound images transmitted in realtime using low-cost telecommunications. A prospective sample of fetal ultrasound images from 11 weeks to 13 weeks and six days of pregnancy was obtained from pregnant women over 18 years old. The examinations were transmitted in realtime to three independent examiners who carried out a qualitative assessment based on parameters established by the Fetal Medicine Foundation. All fetal structures could be viewed and the quality of images received by the examiners was considered normal. There were significant differences for crown-rump length and nuchal translucency in the transmitted images but the loss in definition was acceptable. Thus the quality of images transmitted via the Internet through the use of low-cost software appeared suitable for screening for chromosomal abnormalities in the first trimester of pregnancy.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
During the last century, great improvements have been made in rectal cancer management regarding preoperative staging, pathologic assessment, surgical technique, and multimodal therapies. Surgically, there was a move from a strategy characterized by simple perineal excision to complex procedures performed by means of a laparoscopic approach, and more recently with the aid of robotic systems. Perhaps the most important advance is that rectal cancer is no longer a fatal disease as it was at the beginning of the 20th century. This achievement is definitely due in part to Ernest Mile's contribution regarding lymphatic spread of tumor cells, which helped clarify the natural history of the disease and the proper treatment alternatives. He advocated a combined approach with the rationale to clear "the zone of upward spread." The aim of the present paper is to present a brief review concerning the evolution of rectal cancer surgery, focusing attention on Miles' abdominoperineal excision of the rectum (APR) and its controversies and refinements over time. Although APR has currently been restricted to a small proportion of patients with low rectal cancer, recent propositions to excise the rectum performing a wider perineal and a proper pelvic floor resection have renewed interest on this procedure, confirming that Ernest Miles' original ideas still influence rectal cancer management after more than 100 years.