941 resultados para Road Separators.
Resumo:
This paper presents a semi-automated method for extracting road segments from medium-resolution images based on active testing and edge analysis. The method is based on two sequential and independent stages. Firstly, an active testing method is used to extract an approximated road centreline which is based on a sequential and local exploitation of the image. Secondly, an iterative strategy based on edge analysis and the approximated centreline is used to measure precisely the road centreline. Based on the results obtained using medium-resolution test images, the method seems to be very promising. In general, the method proved to be very accurate whenever the roads are characterized by two well-defined anti-parallel edges and robust even in the presence of larger obstacles such as trees and shadows.
Resumo:
This paper presents a dynamic programming approach for semi-automated road extraction from medium-and high-resolution images. This method is a modified version of a pre-existing dynamic programming method for road extraction from low-resolution images. The basic assumption of this pre-existing method is that roads manifest as lines in low-resolution images (pixel footprint> 2 m) and as such can be modeled and extracted as linear features. On the other hand, roads manifest as ribbon features in medium- and high-resolution images (pixel footprint ≤ 2 m) and, as a result, the focus of road extraction becomes the road centerlines. The original method can not accurately extract road centerlines from medium- and high- resolution images. In view of this, we propose a modification of the merit function of the original approach, which is carried out by a constraint function embedding road edge properties. Experimental results demonstrated the modified algorithm's potential in extracting road centerlines from medium- and high-resolution images.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Vehicles running over vertebrates has been an increasing challenge to the local conservation of some herpetofauna. The Amphisbaenidae are fossorial reptiles which are poorly known ecologically. Biological and natural history data were obtained from three specimens of Amphisbaenia alba that were found dead along 8320 km survey of highways. The rarity of road kill and the importance of the species conservation are discussed.
Resumo:
Incluye Bibliografía
Resumo:
Discurso pronunciado por el Secretario de Programación y Presupuesto de México el día 10 de mayo.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Spanish version available at the Library
Resumo:
Includes bibliography