991 resultados para Rice -- Genetics
Resumo:
Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP-MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (micro-XANES) and bulk extraction followed by anion exchange HPLC-ICP-MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n=39) and brown (n=45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.
Resumo:
Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as mu g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Paired grain, shoot, and soil of 173 individual sample sets of commercially farmed temperate rice, wheat, and barley were surveyed to investigate variation in the assimilation and translocation of arsenic (As). Rice samples were obtained from the Carmargue (France), Doñana (Spain), Cadiz (Spain), California, and Arkansas. Wheat and barleywere collected from Cornwall and Devon (England) and the east coast of Scotland. Transfer of As from soil to grain was an order of magnitude greater in rice than for wheat and barley, despite lower rates of shoot-to-grain transfer. Rice grain As levels over 0.60 microg g(-1) d. wt were found in rice grown in paddy soil of around only 10 microg g(-1) As, showing that As in paddy soils is problematic with respect to grain As levels. This is due to the high shoot/soil ratio of approximately 0.8 for rice compared to 0.2 and 0.1 for barley and wheat, respectively. The differences in these transfer ratios are probably due to differences in As speciation and dynamics in anaerobic rice soils compared to aerobic soils for barley and wheat. In rice, the export of As from the shoot to the grain appears to be under tight physiological control as the grain/shoot ratio decreases by more than an order of magnitude (from approximately 0.3 to 0.003 mg/kg) and as As levels in the shoots increase from 1 to 20 mg/kg. A down regulation of shoot-to-grain export may occur in wheat and barley, but it was not detected at the shoot As levels found in this survey. Some agricultural soils in southwestern England had levels in excess of 200 microg g(-1) d. wt, although the grain levels for wheat and barley never breached 0.55 microg g(-1) d. wt. These grain levels were achieved in rice in soils with an order of magnitude lower As. Thus the risk posed by As in the human food-chain needs to be considered in the context of anaerobic verses aerobic ecosystems.
Resumo:
We report the largest market basket survey of arsenic (As) in U.S. rice to date. Our findings show differences in transitional-metal levels between polished and unpolished rice and geographical variation in As and selenium (Se) between rice processed in California and the South Central U.S. The mean and median As grain levels for the South Central U.S. were 0.30 and 0.27 µg As g-1, respectively, for 107 samples. Levels for California were 41% lower than the South Central U.S., with a mean of 0.17 µg As g-1 and a median of 0.16 µg As g-1 for 27 samples. The mean and median Se grain levels for the South Central U.S. were 0.19 µg Se g-1. Californian rice levels were lower, averaging only 0.08 and 0.06 µg Se g-1 for mean and median values, respectively. The difference between the two regions was found to be significant for As and Se (General Linear Model (GLM):? As p < 0.001; Se p < 0.001). No statistically significant differences were observed in As or Se levels between polished and unpolished rice (GLM:? As p = 0.213; Se p = 0.113). No significant differences in grain levels of manganese (Mn), cobalt (Co), copper (Cu), or zinc (Zn) were observed between California and the South Central U.S. Modeling arsenic intake for the U.S. population based on this survey shows that for certain groups (namely Hispanics, Asians, sufferers of Celiac disease, and infants) dietary exposure to inorganic As from elevated levels in rice potentially exceeds the maximum intake of As from drinking water (based on consumption of 1 L of 0.01 mg L-1 In. As) and Californian state exposure limits. Further studies on the transformation of As in soil, grain As bioavailability in the human gastrointestinal tract, and grain elemental speciation trends are critical.
Resumo:
A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order: iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.
Resumo:
Concern has been raised by Bangladeshi and international scientists about elevated levels of arsenic in Bengali food, particularly in rice grain. This is the first inclusive food market-basket survey from Bangladesh, which addresses the speciation and concentration of arsenic in rice, vegetables, pulses, and spices. Three hundred thirty aman and boro rice, 94 vegetables, and 50 pulse and spice samples were analyzed for total arsenic, using inductivity coupled plasma mass spectrometry (ICP-MS). The districts with the highest mean arsenic rice grain levels were all from southwestern Bangladesh:? Faridpur (boro) 0.51 > Satkhira (boro) 0.38 > Satkhira (aman) 0.36 > Chuadanga (boro) 0.32 > Meherpur (boro) 0.29 µg As g-1. The vast majority of food ingested arsenic in Bangladesh diets was found to be inorganic; with the predominant species detected in Bangladesh rice being arsenite (AsIII) or arsenate (AsV) with dimethyl arsinic acid (DMAV) being a minor component. Vegetables, pulses, and spices are less important to total arsenic intake than water and rice. Predicted inorganic arsenic intake from rice is modeled with the equivalent intake from drinking water for a typical Bangladesh diet. Daily consumption of rice with a total arsenic level of 0.08 µg As g-1 would be equivalent to a drinking water arsenic level of 10 µg L-1. Concern has been raised by Bangladeshi and international scientists about elevated levels of arsenic in Bengali food, particularly in rice grain. This is the first inclusive food market-basket survey from Bangladesh, which addresses the speciation and concentration of arsenic in rice, vegetables, pulses, and spices. Three hundred thirty aman and boro rice, 94 vegetables, and 50 pulse and spice samples were analyzed for total arsenic, using inductivity coupled plasma mass spectrometry (ICP-MS). The districts with the highest mean arsenic rice grain levels were all from southwestern Bangladesh:? Faridpur (boro) 0.51 > Satkhira (boro) 0.38 > Satkhira (aman) 0.36 > Chuadanga (boro) 0.32 > Meherpur (boro) 0.29 µg As g-1. The vast majority of food ingested arsenic in Bangladesh diets was found to be inorganic; with the predominant species detected in Bangladesh rice being arsenite (AsIII) or arsenate (AsV) with dimethyl arsinic acid (DMAV) being a minor component. Vegetables, pulses, and spices are less important to total arsenic intake than water and rice. Predicted inorganic arsenic intake from rice is modeled with the equivalent intake from drinking water for a typical Bangladesh diet. Daily consumption of rice with a total arsenic level of 0.08 µg As g-1 would be equivalent to a drinking water arsenic level of 10 µg L-1.
Resumo:
Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 µg As g-1 (n = 7), and the highest grain arsenic value of the survey at 0.40 µg As g-1. The mean arsenic level of Bangladeshi rice was 0.13 µg As g-1 (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 ± 1% (n = 7), 80 ± 3% (n = 11), and 81 ± 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 ± 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure. Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 µg As g-1 (n = 7), and the highest grain arsenic value of the survey at 0.40 µg As g-1. The mean arsenic level of Bangladeshi rice was 0.13 µg As g-1 (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 ± 1% (n = 7), 80 ± 3% (n = 11), and 81 ± 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 ± 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure.
Resumo:
Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).
Resumo:
The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.
Resumo:
Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.
Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project
Resumo:
In 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Populations of many freshwater species are becoming increasingly threatened as a result of a wide range of anthropogenically mediated factors. In the present study, we wanted to assess levels and patterns of genetic diversity in Ireland's sole population of the River water crowfoot (Ranunculus fluitans), which is restricted to a 12 km stretch of a single river, to assist the formation of conservation strategies. Analysis using amplified fragment length polymorphism (AFLP) indicated comparable levels of genetic diversity to those exhibited by a more extensive population of the species in England, and revealed no evidence of clonal reproduction. Allele-specific PCR analysis of five nuclear single nucleotide polymorphisms (SNPs) indicated no evidence of hybridization with its more abundant congener Ranunculus penicillatus, despite previous anecdotal reports of the occurrence of hybrids. Although the population currently exhibits healthy levels of genetic diversity and is not at risk of genetic assimilation via hybridization with R. penicillatus, it still remains vulnerable to other factors such as stochastic events and invasive species. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Both advocacy for and critiques of the Human Genome Project assume a self-sustaining relationship between genetics and. medicalization. However, this assumption ignores the ways in which the meanings of genetic research are conditional on its position in sequences of events. Based, on analyses of three conditions for which at least one putative gene or genetic marker has been identified, this article argues that critical junctures in the institutional stabilization of phenotypes and the mechanisms that sustain such classifications over time configure the practices and meanings of genetic research. Path dependence is critical to understanding the lack of consistent fit between genetics and medlcalization.