974 resultados para Resistance testing
Resumo:
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.
Resumo:
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Resumo:
Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
Key message “To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.” Abstract Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations. Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.
Resumo:
Key message: Evaluation of resistance toPyrenophora teresf.maculatain barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. Abstract: In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.
Resumo:
This study investigated antimicrobial resistance traits, clonal relationships and epidemiology of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. The H. somni isolates appeared to be geographically clonal, with 27/53 (47%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are no interpretative guidelines for disc diffusion for H. somni against tetracycline. In this study, there was little evidence of antimicrobial resistance in H. somni isolates from Australian cattle. Disc diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results.
Resumo:
Background: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. Results: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. Conclusions: The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.
Resumo:
Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T.castaneum and R.dominica with strong resistance was identified as P45S in T.castaneum and P49S in R.dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T.castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.
Resumo:
The prevalence of resistance to phosphine in the rust-red flour beetle, Tribolium castaneum, from eastern Australia was investigated, as well as the potential fitness cost of this type of resistance. Discriminating dose tests on 115 population samples collected from farms from 2006 to 2010 showed that populations containing insects with the weakly resistant phenotype are common in eastern Australia (65.2 of samples), although the frequency of resistant phenotypes within samples was typically low (median of 2.3). The population cage approach was used to investigate the possibility that carrying the alleles for weak resistance incurs a fitness cost. Hybridized populations were initiated using a resistant strain and either of two different susceptible strains. There was no evidence of a fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. This suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. The resistance prevalence data also provide a basis against which to measure management success.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.