966 resultados para Resin cement
Resumo:
Resin bonded bridgework (RBB) is a technique often overlooked by practitioners despite a large amount of evidence supporting the technique. In Cork University Dental School an evidence-based, standardised approach for the delivery of RBB by undergraduate students has been developed over the past 10 years. The aim of this study was to evaluate the success of this standardised approach on the delivery of RBB by students. 222 bridges were reviewed which had been delivered over a 6 year time period between 2002 and 2007. A success rate of 84.1% was achieved with a mean survival time of 41 months. This study illustrates that predictable and highly successful RBB can be delivered by inexperienced clinicians using an evidence-based, standardised approach.
Resumo:
Aim. To investigate (a) variability in powder/liquid proportioning and (b) effect of variability on diametral tensile strength (DTS), in a zinc phosphate cement. Statistical analyses (α = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios would not differ from those made using the recommended ratio.
Methodology. 34 dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios, together with the manufacturer's recommended ratio, were used to prepare samples for DTS testing.
Results. Powder/liquid ratios ranged from 2.386 to 1.018. The mean ratio (1.644) was not significantly different from the recommended value of 1.718 (P = 0.189). DTS values for the maximum and minimum ratios were both significantly different from each other (P < 0.001) and from the mean value obtained from the recommended ratio (P < 0.001).
Conclusions. Variability exists in powder/liquid ratio for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
Resumo:
The incorporation of carboxyl functionalised multi-walled carbon nanotube (MWCNT-COOH) into a leading proprietary grade orthopaedic bone cement (Simplex PTM) at 0.1 wt% has been investigated. Resultant static and fatigue mechanical properties, in addition to thermal and polymerisation properties, have been determined. Significant improvements (p 0.001) in bending strength (42%), bending modulus (55%) and fracture toughness (22%) were demonstrated. Fatigue properties were improved (p 0.001), with mean number of cycles to failure and fatigue performance index being increased by 64% and 52%, respectively. Thermal necrosis index values at 44C and 55C were significantly reduced (p 0.001) (28% and 27%) versus the control. Furthermore, the onset of polymerisation increased by 58% (p < 0.001), as did the duration of the polymerisation reaction (52%). Peak energy during polymerisation increased by 672% (p < 0.001). Peak area of polymerisation increased by 116% (p < 0.001) indicating that the incorporation of MWCNT-COOH reduced the rate of polymerisation significantly. A non-significant reduction (8%) in percentage monomer conversion was also recorded. Raman spectroscopy clearly showed that the addition of MWCNT-COOH increased the ratio between normalised intensities of the G-Band and D-Band (IG/ID), and also increased the theoretical compressive strain (1.72%) exerted on the MWCNT-COOH by the Simplex PTM cement matrix. Therefore, demonstrating a level of chemical interactivity between the MWCNT-COOH and the Simplex PTM bone cement exists and consequently a more effective mechanism for successful transfer of mechanical load. The extent of homogenous dispersion of the MWCNT-COOH throughout the bone cement was determined using Raman mapping. Ke
Resumo:
Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.
Resumo:
Aesthetics of concrete structures is directly related to the quality of their surface finish. The objective of this investigation was to examine the effect of rheological properties of cement-based mortars on the quality of their surface finish. The study was divided into two phases. Firstly, the influence of the mix composition of mortars, viz. the water to cement (w/c) ratio, the sand content and the superplasticiser (SP) dosage on their rheology was evaluated. Secondly, the surface finish quality was characterised and related to the rheology of the studied systems. Rheology of these materials, i.e. the yield value, was measured using a vane viscometer. The quality of the surface finish was assessed by quantification of the surface air voids by analysing digital photographs of the mould finished sample surfaces. It was found that an increase in the w/c ratio and the SP content decreased the yield value, whilst the increase in the sand content had an opposite effect. When the surface quality is concerned, an increase in the yield value was found to increase the total content of the surface air voids and especially those with size smaller than 1 mm in diameter. Moreover, the analysis of the location of the surface air voids along the height of the sample revealed that with the increase in the yield value their concentration was higher in the bottom section of the analysed samples.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.
Resumo:
The alkali activation of waste products has become a widespread topic of research, mainly due to environmental benefits. Portland cement and alkali-activated mortar samples were prepared to compare their resistance to silage effluent which contains lactic acid. The mechanism of attack on each sample has also been investigated.
Resumo:
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.
Resumo:
O desenvolvimento de betões de elevado desempenho, durante o início da década de 80, revelou que este tipo particular de materiais com base em cimento é susceptível a problemas de cura. São bem conhecidos os efeitos dos fenómenos autogéneos em sistemas de elevado desempenho com base em cimento, nomeadamente a fissuração em idade jovem. Esta é, aliás vista como a maior limitação no desenvolvimento de novos materiais com durabilidade superior. Desenvolvimentos recentes de métodos de cura interna provaram ser uma boa estratégia de mitigação dos efeitos da auto-dissecação destes sistemas, onde a presente tese ganha o seu espaço no tempo. Este estudo centra-se essencialmente em sistemas de elevado desempenho com base em cimento com cura interna através de partículas superabsorventes, dando particular importância à alteração de volume em idade jovem. Da análise mais aprofundada deste método, resultam algumas limitações na sua aplicabilidade, especialmente em sistemas modificados com sílica de fumo. Conclui-se que a natureza física e química dos polímeros superabsorventes pode afectar significativamente a eficiência da cura interna. Em adição, os mecanismos de cura interna são discutidos mais profundamente, sendo que para além dos mecanismos baseados em fenómenos físicos e químicos, parecem existir efeitos mecânicos significativos. Várias técnicas foram utilizadas durante o decorrer desta investigação, com o objectivo, para além da caracterização de certas propriedades dos materiais, de perseguir as questões deixadas em aberto pela comunidade internacional, relativamente aos mecanismos que fundamentam a explicação dos fenómenos autogéneos. Como exemplo, são apresentados os estudos sobre hidratação dos sistemas para avaliação do problema numa escala microscópica, em vez de macroscópica. Uma nova técnica de cura interna emerge da investigação, baseada na utilização de agregados finos como veiculo para mitigar parcialmente a retracção autogénea. Até aqui, esta técnica não encontra par em investigação anterior, mas a extensão da cura interna ou a eficácia na mitigação baseada neste conceito encontra algumas limitações. A significância desta técnica em prevenir a micro fissuração é um aspecto que está ainda em aberto, mas pode concluir-se que os agregados finos podem ser benéficos na redução dos efeitos da restrição localizada no sistema, reduzindo o risco de micro fissuração. A utilização combinada de partículas finas de agregado e polímeros super absorventes pode ter como consequência betão sem microfissuração, ou pelo menos com nanofissuração.
Resumo:
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe’s energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).