988 resultados para Residual Soil Materials
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
The wide spread use and strong reliance on both fertilizers and pesticides made of agrigenic pollution one of the major contemporary threats to environment and human health. Impacts on the environment vary from local effects, such as eutrophycation1, 2, loss of biodiversity and diminished ecosystem health3, to global effects, such as the aggravation of global warming2, 4 and ozone layer depletion5. The novelty of nanoremediation and its early successes, reported for various contexts, present the prospect for the development of relevant applications for agrigenic contaminants.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Engenharia Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
Present paper present the main results obtained in the scope of an ongoing project which aims to contribute to the valorization of a waste generated by the Portuguese oil company in construction materials. This waste is an aluminosilicate with high pozzolanic reactivity. Several different technological applications had already been tested with success both in terms of properties and compliance with the corresponding standards specifications. Namely, this project results already demonstrated that this waste can be used in traditional concrete, self-compacted concrete, mortars (renders, masonry mortar, concrete repair mortars), cement main constituent as well as alkali activated binders.
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Utilização de coberturas ajardinadas de vegetação intensiva, extensiva e horta urbana em edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Dissertação apresentada à Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, para a obtenção do grau de Mestre em Energia e Bioenergia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro
Resumo:
As redes de terras são algo que atormenta muitas operadoras de telecomunicações. Quando o comum civil pensa que apenas existem antenas e que é importante a transmissão de dados porque naturalmente não lhes faz falta saber mais nada, as pessoas envolventes na construção de uma estação de telecomunicações têm preocupações não só com a parte de rádio e antenas, mas fundamentalmente com a parte de energia e de infra-estruturas. No desenvolvimento deste projecto, torna-se então importante perceber como as redes de terras são implementadas, como atingir valores satisfatórios para as operadoras, como realizar melhoria da rede de terras já existentes, implementar furos artesianos/valas e sobretudo como melhorar no futuro. Os materiais utilizados e o estudo prévio das condições do terreno onde a estação rádio-base é implementada nem sempre coincidem com os resultados desejados e que pensamos que seriam facilmente atingidos após implementação da torre. Neste projecto, vamos então acompanhar todos os processos, desde a legalização, construção, testes e finalmente a medição da resistência de terras final. Se os valores foram aceitáveis, óptimo para a operadora de telecomunicações e para a empresa responsável pela implementação. Caso os resultados estejam aquém das expectativas, é altura de selecionar os melhores e recorrendo a um conjunto de técnicas que garantam resultados e o menos dispêndio de dinheiro possível, vamos avançar para as melhorias. Os regimes de protecção das pessoas e da estação são bastante importantes. É importante também perceber as condições dos solos e saber simular com o programa ERICO que será fundamental para se efetuar uma comparação entre o teórico e o implementado praticamente. No fim, parte fulcral serão as medições finais, a relação preço-qualidade das melhorias implementadas, a análise dos resultados com argumentos válidos e o bom senso da operadora para aceitar ou rejeitar os trabalhos. Contrato é contrato, fazer mais e melhor é uma exigência constante.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Conservação e Restauro, especialização em pintura sobre tela