905 resultados para Residual
Resumo:
The timing of widespread continental emergence is generally considered to have had a dramatic effect on the hydrological cycle, atmospheric conditions, and climate. New secondary ion mass spectrometry (SIMS) oxygen and laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) Lu-Hf isotopic results from dated zircon grains in the granitic Neoarchean Rum Jungle Complex provide a minimum time constraint on the emergence of continental crust above sea level for the North Australian craton. A 2535 ± 7 Ma monzogranite is characterized by magmatic zircon with slightly elevated δ18O (6.0‰–7.5‰ relative to Vienna standard mean ocean water [VSMOW]), consistent with some contribution to the magma from reworked supracrustal material. A supracrustal contribution to magma genesis is supported by the presence of metasedimentary rock enclaves, a large population of inherited zircon grains, and subchondritic zircon Hf (εHf = −6.6 to −4.1). A separate, distinct crustal source to the same magma is indicated by inherited zircon grains that are dominated by low δ18O values (2.5‰–4.8‰, n = 9 of 15) across a range of ages (3536–2598 Ma; εHf = −18.2 to +0.4). The low δ18O grains may be the product of one of two processes: (1) grain-scale diffusion of oxygen in zircon by exchange with a low δ18O magma or (2) several episodes of magmatic reworking of a Mesoarchean or older low δ18O source. Both scenarios require shallow crustal magmatism in emergent crust, to allow interaction with rocks altered by hydrothermal meteoric water in order to generate the low δ18O zircon. In the first scenario, assimilation of these altered rocks during Neoarchean magmatism generated low δ18O magma with which residual detrital zircons were able to exchange oxygen, while preserving their U-Pb systematics. In the second scenario, wholesale melting of the altered rocks occurred in several distinct events through the Mesoarchean, generating low δ18O magma from which zircon crystallized. Ultimately, in either scenario, the low δ18O zircons were entrained as inherited grains in a Neoarchean granite. The data suggest operation of a modern hydrological cycle by the Neoarchean and add to evidence for the increased emergence of continents by this time
Resumo:
Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.
Resumo:
STUDY QUESTION Can the number of oocytes retrieved in IVF cycles be predictive of the age at menopause? SUMMARY ANSWER The number of retrieved oocytes can be used as an indirect assessment of the extent of ovarian reserve to provide information on the duration of the reproductive life span in women of different ages. WHAT IS KNOWN ALREADY Menopause is determined by the exhaustion of the ovarian follicular pool. Ovarian reserve is the main factor influencing ovarian response in IVF cycles. As a consequence the response to ovarian stimulation with the administration of gonadotrophins in IVF treatment may be informative about the age at menopause. STUDY DESIGN, SIZE, DURATION In the present cross-sectional study, participants were 1585 infertile women from an IVF clinic and 2635 menopausal women from a more general population. PARTICIPANTS/MATERIALS, SETTING, METHODS For all infertile women, the response to ovarian stimulation with gonadotrophins was recorded. For menopausal women, relevant demographic characteristics were available for the analysis. MAIN RESULTS AND THE ROLE OF CHANCE A cubic function described the relationship between mean numbers of oocytes and age, with all terms being statistically significant. From the estimated residual distribution of the actual number of oocytes about this mean, a distribution of the age when there would be no oocytes retrieved following ovarian stimulation was derived. This was compared with the distribution of the age at menopause from the menopausal women, showing that menopause occurred about a year later. LIMITATIONS, REASONS FOR CAUTION The retrieved oocyte data were from infertile women, while the menopausal ages were from a more general population. WIDER IMPLICATIONS OF THE FINDINGS In the present study, we have shown some similarity between the distributions of the age when no retrieved oocytes can be expected after ovarian stimulation and the age at menopause. For a given age, the lower the ovarian reserve, the lower the number of retrieved oocytes would be and the earlier the age that menopause would occur.
Resumo:
Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.
Resumo:
Background Over the last two decades, Transcutaneous Bone-Anchored Prosthesis (TCBAP) has proven to be an effective alternative for prosthetic attachment for amputees, particularly for individuals unable to wear a socket. [1-17] However, the load transmitted through a typical TCBAP to the residual tibia and knee joint can be unbearable for transtibial amputees with knee arthritis. Aim A. To describe the surgical procedure combining TKR with TCBAP for the first time; and B. To present preliminary data on potential risks and benefits with assessment of clinical and functional outcomes at follow up Method We used a TCBAP connected to the tibial base plate of a Total Knee Replacement (TKR) prosthesis enabling the tibial residuum and the knee joint to act as weight sharing structures by transferring the load directly to the femur. We performed a standard hinged TKR connected to a custom made TCBAP at the first stage followed by creating a skin implant interface as a second stage. We retrospectively reviewed four cases of trans-tibial amputations presenting with knee joint arthritis. Patients were assessed clinically and functionally including standard measures of health-related quality of life, amputee mobility predictor tool, ambulation tests and actual activity level. Progress was monitored for 6-24 months. Results Clinical outcomes including adverse events show no major complications but one case of superficial infection. Functional outcomes improved for all participants as early as 6 months follow up. Discussion & Conclusion TKR and TCBAP were combined for the first time in this proof-of-concept case series. The preliminary outcomes indicated that this procedure is potentially a safe and effective alternative for this patient group despite the theoretical increase in risk of ascending infection through the skin-implant interface to the external environment. We suggest larger comparative series to further validate these results.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability. Introduction: Evidence from studies in animals and humans suggests that the genetic control of bone mineral density (BMD) may differ at different skeletal sites and between genders. This question has important implications for the design and interpretation of genetic studies of osteoporosis. Methods: We examined the genetic profile of 147 families with 816 individuals recruited through probands with extreme low BMD (T-score < −2.5, Z-score < −2.0). Complex segregation analysis was performed using the Pedigree Analysis Package. BMD was measured by DXA at both lumbar spine (L1-L4) and femoral neck. Results: Complex segregation analysis excluded purely monogenic and environmental models of segregation of lumbar spine and femoral neck BMD in these families. Pure polygenic models were excluded at the lumbar spine when menopausal status was considered as a covariate, but not at the femoral neck. Mendelian models with a residual polygenic component were not excluded. These models were consistent with the presence of a rare Mendelian genotype of prevalence 3–19 %, causing high BMD at the hip and spine in these families, with additional polygenic effects. Total heritability range at the lumbar spine was 61–67 % and at the femoral neck was 44–67 %. Significant differences in correlation of femoral neck and lumbar spine BMD were observed between male and female relative pairs, with male-male comparisons exhibiting stronger lumbar spine BMD correlation than femoral neck, and female-female comparisons having greater femoral neck BMD correlation than lumbar spine. These findings remained true for parent-offspring correlations when menopausal status was taken into account. The recurrence risk ratio for siblings of probands of a Z-score < −2.0 was 5.4 at the lumbar spine and 5.9 at the femoral neck. Conclusions: These findings support gender- and site-specificity of the inheritance of BMD. These results should be considered in the design and interpretation of genetic studies of osteoporosis.
Resumo:
Forty-three children with recurrent abdominal pain who had received treatment from a paediatric gastroenterology clinic were reassessed 6 and 12 months after initial presentation. Measures of children's pain included a pain diary (PD) which measured pain intensity, a parent observation record (POR) which assessed pain behaviour and a structured interview to assess the degree to which pain interferes with the child's activities. Pretreatment measures of the child's history of pain, coping strategies in dealing with pain, and their mother's caregiving strategies were examined as predictors of two indices of clinical improvement: the extent of change in pain on the child's pain diary from pre-test to 6 months follow-up, and the degree of interference to the child's activities. All children had shown significant improvement in the level of pain at follow up, with 74.4% being pain free at 12 month follow-up on the PD and 83.7% being pain free on the POR. The amount of change they showed varied, with some showing residual impairment even though they were significantly improved. Regression analyses showed that children with greatest reductions on the child's pain diary at the 6 month follow-up were those with a stress-related mode of onset, whose mothers used more adaptive caregiving strategies, and who received cognitive behavioural family intervention. There was also a non significant trend for younger children to fare better. These data suggest the importance of early diagnosis and routinely assessing parental caregiving behaviour and beliefs about the origins of pain in planning treatment for children with RAP.
Resumo:
The accelerated rate of increase in atmospheric CO2 concentration in recent years has revived the idea of stabilizing the global climate through geoengineering schemes. Majority of the proposed geoengineering schemes will attempt to reduce the amount of solar radiation absorbed by our planet. Climate modelling studies of these so called 'sunshade geoengineering schemes' show that global warming from increasing concentrations of CO2 can be mitigated by intentionally manipulating the amount of sunlight absorbed by the climate system. These studies also suggest that the residual changes could be large on regional scales, so that climate change may not be mitigated on a local basis. More recent modelling studies have shown that these schemes could lead to a slow-down in the global hydrological cycle. Other problems such as changes in the terrestrial carbon cycle and ocean acidification remain unsolved by sunshade geoengineering schemes. In this article, I review the proposed geoengineering schemes, results from climate models and discuss why geoengineering is not the best option to deal with climate change.
Resumo:
Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
In this paper, we present the preparation and characterization of nanoparticles and nanowires of Pr0.5Sr0.5MnO3 (PSMO). The main results of this investigation are as follows: (a) a comparison with the properties of the bulk material shows that the ferromagnetic (FM) transition at 270 K remains unaffected but the anti-ferromagnetic (AFM) transition at TN = 150 K disappears in the nanoparticles, (b) the size induced ground state magnetic phase (below 150 K) is predominantly FM, coexisting with a residual AFM phase, and (c) the temperature dependence of magnetic anisotropy shows complex behaviour, being higher in the nanoparticles at high temperatures and lower at moderately lower temperatures in comparison with the bulk. The results obtained from the extensive magnetization, magnetotransport and electron magnetic resonance studies made on various samples are presented and discussed in detail.
Resumo:
Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.