954 resultados para Replication


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Monotherapy against HIV has undoubted theoretical advantages and has good scientific fundaments. However, it is still controversial and here we will analyze the efficacy and safety of MT with darunavir with ritonavir (DRV/r) on patients who have received this treatment in our hospitals. MATERIALS AND METHODS Observational retrospective study that includes patients from 10 Andalusian hospitals that have received DRV/r in MT and that have been followed over a minimum of 12 months. We carried out a statistical descriptive analysis based on the profile of patients who had been prescribed MT and the efficacy and safety that were observed, paying special attention to treatment failure and virological evolution. RESULTS DRV/r was prescribed to 604 patients, of which 41.1% had a CD4 nadir <200/mmc. 33.1% had chronic hepatitis caused by HCV, had received an average of five lines of previous treatment and had a history of treatment failure to analogues in 33%, to non-analogues 22 and protease inhibitors (PI) in 19.5%. 76.6% proceeded from a previous treatment with PI. The simplification was the main criteria for the instauration of MT in the 81.5% and the adverse effects in the 18.5%. We managed to maintain MT in 84% of cases, with only 4.8% of virological failure (VF) with viral load (VL) >200 c/mL and 3.6% additional losses due to VF with VL between 50 and 200 copies/mL. Thirty three genotypes were performed after failure without findings of resistance mutations to DRV/r or other IPs. Only 23.7% of patients presented some blips during the period of exposition to MT. Eighty seven percent of all determinations of VL had <50 copies/mL, and only 4.99% had >200 copies/mL. Although up to 14.9% registered at some point an AE, only 2.6% abandoned MT because of AE and 1.2% because of voluntary decision. Although the average of total and LDL cholesterol increases 10 mg/dL after 2 years of follow-up, so did HDL cholesterol in 3mg/dL and the values of triglycerides (-14 mg/dL) and GPT (-6 UI/mL) decreased. The average count of CD4 lymphocytes increased from 642 to 714/mm(3) at 24 weeks. CONCLUSIONS In a very broad series of patients obtained from clinical practice, data from clinical trials was confirmed: MT with DRV as a de-escalation strategy is very safe, it's associated to a negligible rate of adverse effects and maintains a good suppression of HIV replication. VF (with >50 or >200 copies/mL) is always under 10% and in any case without consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to reflect on the possibilities and challenges of Community Development Banks (CDBs) as an innovative method of socioeconomic management of microcredit for poor populations. To this end, we will discuss the case of Banco Palmas in Conjunto Palmeiras in the city of Fortaleza, in the northeastern state of Ceará, as an empirical case study. The analyses presented here are based on information obtained from Banco Palmas between late 2011 and early 2012. In addition, previous studies by other researchers on the bank and other studies on CDBs were important. The primary data collected at Banco Palmas came from documents made available by the bank, such as reports and mappings. The analyses describe some of the characteristics of the granting of microcredit and allow one to situate it in the universe of microfinance and solidarity finance. They also show the significant growth of local consumption, mostly through the use of the Palmas social currency. The Banco Palmas experience, aside from influencing national public policies of solidarity finance, initiated a CDBs network that encourages the replication of these experiences throughout the country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION We have hypothesized that incompatibility between the G1m genotype of the patient and the G1m1 and G1m17 allotypes carried by infliximab (INX) and adalimumab (ADM) could decrease the efficacy of these anti-tumor necrosis factor (anti-TNF) antibodies in the treatment of rheumatoid arthritis (RA). METHODS The G1m genotypes were analyzed in three collections of patients with RA totaling 1037 subjects. The first, used for discovery, comprised 215 Spanish patients. The second and third were successively used for replication. They included 429 British and Greek patients and 393 Spanish and British patients, respectively. Two outcomes were considered: change in the Disease Activity Score in 28 joint (ΔDAS28) and the European League Against Rheumatism (EULAR) response criteria. RESULTS An association between less response to INX and incompatibility of the G1m1,17 allotype was found in the discovery collection at 6 months of treatment (P = 0.03). This association was confirmed in the replications (P = 0.02 and 0.08, respectively) leading to a global association (P = 0.001) that involved a mean difference in ΔDAS28 of 0.4 units between compatible and incompatible patients (2.3 ± 1.5 in compatible patients vs. 1.9 ± 1.5 in incompatible patients) and an increase in responders and decrease in non-responders according to the EULAR criteria (P = 0.03). A similar association was suggested for patients treated with ADM in the discovery collection, but it was not supported by replication. CONCLUSIONS Our results suggest that G1m1,17 allotypes are associated with response to INX and could aid improved therapeutic targeting in RA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polysaccharide sidechains attached to proteins play important roles in cell-cell and receptor-ligand interactions. Variation in the carbohydrate component has been extensively studied for the iron transport protein transferrin, because serum levels of the transferrin isoforms asialotransferrin + disialotransferrin (carbohydrate-deficient transferrin, CDT) are used as biomarkers of excessive alcohol intake. We conducted a genome-wide association study to assess whether genetic factors affect CDT concentration in serum. CDT was measured in three population-based studies: one in Switzerland (CoLaus study, n = 5181) and two in Australia (n = 1509, n = 775). The first cohort was used as the discovery panel and the latter ones served as replication. Genome-wide single-nucleotide polymorphism (SNP) typing data were used to identify loci with significant associations with CDT as a percentage of total transferrin (CDT%). The top three SNPs in the discovery panel (rs2749097 near PGM1 on chromosome 1, and missense polymorphisms rs1049296, rs1799899 in TF on chromosome 3) were successfully replicated , yielding genome-wide significant combined association with CDT% (P = 1.9 × 10(-9), 4 × 10(-39), 5.5 × 10(-43), respectively) and explain 5.8% of the variation in CDT%. These allelic effects are postulated to be caused by variation in availability of glucose-1-phosphate as a precursor of the glycan (PGM1), and variation in transferrin (TF) structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : Control of pancreatic ß-cell mass and function by gluco-incretin hormones: Identification of novel regulatory mechanisms for the treatment of diabetes The ß-cells of islets of Langerhans secrete insulin to reduce hyperglycemia. The number of pancreatic islet ß-cells and their capacity to secrete insulin is modulated in normal physiological conditions to respond to the metabolic demand of the organism. A failure of the endocrine pancreas to maintain an adequate insulin secretory capacity due to a reduced ß-cell number and function underlies the pathogenesis of both type 1 and type 2 diabetes. The molecular mechanisms controlling the glucose competence of mature ß-cells, i.e., the magnitude of their insulin secretion response to glucose, ß-cell replication, their differentiation from precursor cells and protection against apoptosis are poorly understood. To investigate these mechanisms, we studied the effects on ß-cells of the gluco-incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) which are secreted by intestinal endocrine cells after food intake. Besides acutely potentiating glucose-stimulated insulin secretion, these hormones induce ß-cell differentiation from precursor cells, stimulate mature ß-cell replication, and protect them against apoptosis. Therefore, understanding the molecular basis for gluco-incretin action may lead to the uncovering of novel ß-cell regulatory events with potential application for the treatment or prevention of diabetes. Islets from mice with inactivation of both GIP and GLP-1 receptor genes (dK0) present a defect in glucose-induced insulin secretion and are more sensitive than control islets to cytokine-induced apoptosis. To search for regulatory genes, that may control both glucose competence and protection against apoptosis, we performed comparative transcriptomic analysis of islets from control and dK0 mice. We found a strong down-regulation of the IGF1 Rexpression in dK0 islets. We demonstrated in both a mouse insulin-secreting cell line and primary islets, that GLP-1 stimulated IGF-1R expression and signaling. Importantly, GLP-1induced IGF-1R-dependent Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism. We further showed that activation of IGF-1R signaling was dependent on the secretion of IGF-2 and IGF-2 expression was regulated by nutrients. Finally, we demonstrated that the IGF-Z/IGF-1R autocrine loop was required for GLP-1 i) to protect ß-cells against cytokine-induced apoptosis, ii) to enhance their glucose competence and iii) to increase ß-cell proliferation. Résumé : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones glucoincrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Les cellules ß des îlots de Langerhans sécrètent l'insuline pour diminuer l'hyperglycémie. Le nombre de cellules ß et leur capacité à sécréter l'insuline sont modulés dans les conditions physiologiques normales pour répondre à la demande métabolique de l'organisme. Un échec du pancréas endocrine à maintenir sa capacité sécrétoire d'insuline dû à une diminution du nombre et de la fonction des cellules ß conduit au diabète de type 1 et de type 2. Les mécanismes moléculaires contrôlant la compétence au glucose des cellules ß matures, tels que, l'augmentation de la sécrétion d'insuline en réponse au glucose, la réplication des cellules ß, leur différentiation à partir de cellules précurseurs et la protection contre l'apoptose sont encore peu connus. Afin d'examiner ces mécanismes, nous avons étudié les effets sur les cellules ß des hormones gluco-incrétines, glucose-dépendent insulinotropic polypeptide (G1P) et glucagon-like peptide-1 (GLP-1) qui sont sécrétées par les cellules endocrines de l'intestin après la prise alimentaire. En plus de potentialiser la sécrétion d'insuline induite par le glucose, ces hormones induisent la différentiation de cellules ß à partir de cellules précurseurs, stimulent leur prolifération et les protègent contre l'apoptose. Par conséquent, comprendre les mécanismes d'action des gluco-incrétines permettrait de découvrir de nouveaux processus régulant les cellules ß avec d'éventuelles applications dans le traitement ou la prévention du diabète. Les îlots de souris ayant une double inactivation des gènes pour les récepteurs du GIP et du GLP-1 (dK0) présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose induite par les cytokines. Afin de déterminer les gènes régulés, qui pourraient contrôler à la fois la compétence au glucose et la protection contre l'apoptose, nous avons effectué une analyse comparative transcriptomique sur des îlots de souris contrôles et dKO. Nous avons constaté une forte diminution de l'expression d'IGF-1R dans les îlots dKO. Nous avons démontré, à la fois dans une lignée cellulaire murine sécrétant l'insuline et dans îlots primaires, que le GLP-1 stimulait l'expression d'IGF-1R et sa voie de signalisation. Par ailleurs, la phosphorylation d'Akt dépendante d'IGF1-R induite parle GLP-1 nécessite une sécrétion active, indiquant la présence d'un mécanisme d'activation autocrine. Nous avons ensuite montré que l'activation de la voie de signalisation d'IGF-1R était dépendante de la sécrétion d'IGF-2, dont l'expression est régulée par les nutriments. Finalement, nous avons démontré que la boucle autocrine IGF-2/IGF-1R est nécessaire pour le GLP-1 i) pour protéger les cellules ß contre l'apoptose induite par les cytokines, ii) pour améliorer la compétence au glucose et iii) pour augmenter la prolifération des cellules ß. Résumé tout public : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones gluco-incrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Chez les mammifères, la concentration de glucose sanguine (glycémie) est régulée et maintenue à une valeur relativement constante d'environ 5 mM. Cette régulation est principalement contrôlée par 2 hormones produites par les îlots pancréatiques de Langerhans: l'insuline sécrétée par les cellules ß et le glucagon sécrété par les cellules a. A la suite d'un repas, l'augmentation de la glycémie entraîne la sécrétion d'insuline ce qui permet le stockage du glucose dans le foie, les muscles et le tissu adipeux afin de diminuer le taux de glucose circulant. Lors d'un jeûne, la diminution de la glycémie permet la sécrétion de glucagon favorisant alors la production de glucose par le foie, normalisant ainsi la glycémie. Le nombre de cellules ß et leur capacité sécrétoire s'adaptent aux variations de la demande métabolique pour assurer une normoglycémie. Une destruction complète ou partielle des cellules ß conduit respectivement au diabète de type 1 et de type 2. Bien que l'augmentation de la glycémie soit le facteur stimulant de la sécrétion d'insuline, des hormones gluco-incrétines, principalement le GLP-1 (glucagon-like peptide-1) et le GIP (glucose-dependent insulinotropic polypeptide) sont libérées par l'intestin en réponse aux nutriments (glucose, acides gras) et agissent au niveau des cellules ß, potentialisant la sécrétion d'insuline induite par le glucose, stimulant leur prolifération, induisant la différentiation de cellules précurseurs en cellules ß matures et les protègent contre la mort cellulaire (apoptose). Afin d'étudier plus en détail ces mécanismes, nous avons généré des souris déficientes pour les récepteurs du GIP et du GLP-l. Les îlots pancréatiques de ces souris présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose par rapport aux îlots de souris contrôles. Nous avons donc cherché les gènes régulés pas ces hormones contrôlant la sécrétion d'insuline et la protection contre l'apoptose. Nous avons constaté une forte diminution de l'expression du récepteur à l'IGF-1 (IGF-1R) dans les îlots de souris déficientes pour les récepteurs des gluco-incrétines. Nous avons démontré dans un model de cellules ß en culture et d'îlots que le GLP-1 augmentait l'expression d'IGF-1R et la sécrétion de son ligand (IGF-2) permettant l'activation de la voie de signalisation. Finalement, nous avons montré que l'activation de la boucle IGF-2/IGF-1R induite par le GLP-1 était nécessaire pour la protection contre l'apoptose, l'augmentation de la sécrétion et la prolifération des cellules ß.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Genomewide association studies (GWAS) have identified clear evidence of genetic markers for nicotine dependence. Other smoking phenotypes have been tested, but the results are less consistent. The tendency to relapse versus the ability to maintain long-term abstinence has received little attention in genetic studies; thus, our aim was to provide a better biological understanding of this phenotype through the identification of genetic loci associated with smoking relapse. METHODS: We carried out a GWAS on data from two European population-based collections, including a total of 835 cases (relapsers) and 990 controls (abstainers). Top-ranked findings from the discovery phase were tested for replication in two additional independent European population-based cohorts. RESULTS: Of the seven top markers from the discovery phase, none were consistently associated with smoking relapse across all samples and none reached genomewide significance. A single-nucleotide polymorphism rs1008509, within the Xylosyltransferase II (XYLT2) gene, was suggestively associated with smoking relapse in the discovery phase (β=-0.504; P=5.6E-06) and in the first replication sample (ALSPAC) (β=-0.27; P=0.004; n=1932), but not in the second sample (KORA) (β=0.19; P=0.138; n=912). We failed to identify an association between loci implicated previously in other smoking phenotypes and smoking relapse. CONCLUSION: Although no genomewide significant findings emerged from this study, we found that loci implicated in other smoking phenotypes were not associated with smoking relapse, which suggests that the neurobiology of smoking relapse and long-term abstinence may be distinct from biological mechanisms implicated in the development of nicotine dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Highly recurrent major depressive disorder (MDD) has reportedly increased risk of shifting to bipolar disorder; high recurrence frequency has, therefore, featured as evidence of 'soft bipolarity'. We aimed to investigate the genetic underpinnings of total depressive episode count in recurrent MDD. METHODS: Our primary sample included 1966 MDD cases with negative family history of bipolar disorder from the RADIANT studies. Total episode count was adjusted for gender, age, MDD duration, study and center before being tested for association with genotype in two separate genome-wide analyses (GWAS), in the full set and in a subset of 1364 cases with positive family history of MDD (FH+). We also calculated polygenic scores from the Psychiatric Genomics Consortium MDD and bipolar disorder studies. RESULTS: Episodicity (especially intermediate episode counts) was an independent index of MDD familial aggregation, replicating previous reports. The GWAS produced no genome-wide significant findings. The strongest signals were detected in the full set at MAGI1 (p=5.1×10(-7)), previously associated with bipolar disorder, and in the FH+ subset at STIM1 (p=3.9×10(-6) after imputation), a calcium channel signaling gene. However, these findings failed to replicate in an independent Munich cohort. In the full set polygenic profile analyses, MDD polygenes predicted episodicity better than bipolar polygenes; however, in the FH+ subset, both polygenic scores performed similarly. LIMITATIONS: Episode count was self-reported and, therefore, subject to recall bias. CONCLUSIONS: Our findings lend preliminary support to the hypothesis that highly recurrent MDD with FH+ is part of a 'soft bipolar spectrum' but await replication in larger cohorts.