980 resultados para Reflectance near infrared spectroscopy
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
Three different treatments were applied on several specimens of dolomitic and calcitic marble, properly stained with rust to mimic real situations (the stone specimens were exposed to the natural environment for about six months in contact with rusted iron). Thirty six marble specimens, eighteen calcitic and eighteen dolomitic, were characterized before and after treatment and monitored throughout the cleaning tests. The specimens were characterized by SEM-EDS (Scanning Electron Microscopy coupled with Energy Dispersion System), XRD (XRay Diffraction), XRF (X-Ray Fluorescence), FTIR (Fourier Transform Infrared Spectroscopy) and color measurements. It was also made a microscopic and macroscopic analysis of the stone surface along with the tests of short and long term capillary absorption. A series of test trials were conducted in order to understand which concentrations and contact times best suits to this purpose, to confirm what had been written to date in the literature. We sought to develop new methods of treatment application, skipping the usual methods of applying chemical treatments on stone substrates, with the use of cellulose poultice, resorting to the agar, a gel already used in many other areas, being something new in this area, which possesses great applicability in the field of conservation of stone materials. After the application of the best methodology for cleaning, specimens were characterized again in order to understand which treatment was more effective and less harmful, both for the operator and the stone material. Very briefly conclusions were that for a very intense and deep penetration into the stone, a solution of 3.5% of SDT buffered with ammonium carbonate to pH around 7 applied with agar support would be indicated. For rust stains in its initial state, the use of Ammonium citrate at a concentration of 5% buffered with ammonium to pH 7 could be applied more than once until satisfactory results appear.
Resumo:
Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.
Resumo:
The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals.
Resumo:
This work will discuss the use of different paper membranes as both the substrate and dielectric for field-effect memory transistors. Three different nanofibrillated cellulose membranes (NFC) were used as the dielectric layer of the memory transistors (NFC), one with no additives, one with an added polymer PAE and one with added HCl. Gallium indium zinc oxide (GIZO) was used as the device’s semiconductor and gallium aluminium zinc oxide (GAZO) was used as the gate electrode. Fourier transform infrared spectroscopy (FTIR) was used to access the water content of the paper membranes before and after vacuum. It was found that the devices recovered their water too quickly for a difference to be noticeable in FTIR. The transistor’s electrical performance tests yielded a maximum ION/IOFF ratio of around 3,52x105 and a maximum subthreshold swing of 0,804 V/decade. The retention time of the dielectric charge that grants the transistor its memory capabilities was accessed by the measurement of the drain current periodically during 144 days. During this period the mean drain current did not lower, leaving the retention time of the device indeterminate. These results were compared with similar devices revealing these devices to be at the top tier of the state-of-the-art.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
Thermal degradation upon melting is one of the major drawbacks reported for polyhydroxyalkanoates (PHA). However, the role of residues originating from the fermentation and the extraction steps on the thermal stability of this class of biopolymers still needs to be clarified. In the particular case of PHA produced from mixed microbial cultures (MMC), this topic is even less documented in the literature. Here, two polyhydroxy(butyrate-co-valerate) (PHBV) produced from MMC enriched in PHA accumulating organisms and fed with cheese whey were studied. A micro extrusion line is used to produce filaments and assess the processability and the degradation of processed PHBV. The prototype micro extrusion line allows for studying grams of materials. The two PHBV contain 18 mol% HV. PHBV was recovered with 11 wt% residues, and further submitted to a purification procedure resulting in a second biopolyester containing less than 2 wt% impurities. The thermorheological characterization of the two PHBV is first presented, together with their semicrystalline properties. Then the processing windows of the two biopolyesters are presented. Finally, the properties of extruded filaments are reported and the thermomechanical degradation of PHBV is extensively studied. The structure was assessed by wide angle X-ray diffraction, mechanical and rheological properties are reported, thermal properties are studied with differential scanning calorimetry and thermogravimetric analysis, whereas Fourier Transform Infrared spectroscopy was used to assess the impact of the extrusion on PHBV chemical structure. All results obtained with the two PHBV are compared to assess the effects of residues on both PHBV processability and degradation.
Resumo:
Dissertação de mestrado em Propriedades e Tecnologias de Polímeros
Mechanism of extracellular silver nanoparticles synthesis by Stereum hirsutum and Fusarium oxysporum
Resumo:
The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.
Resumo:
Radiometric changes observed in multi-temporal optical satellite images have an important role in efforts to characterize selective-logging areas. The aim of this study was to analyze the multi-temporal behavior of spectral-mixture responses in satellite images in simulated selective-logging areas in the Amazon forest, considering red/near-infrared spectral relationships. Forest edges were used to infer the selective-logging infrastructure using differently oriented edges in the transition between forest and deforested areas in satellite images. TM/Landsat-5 images acquired at three dates with different solar-illumination geometries were used in this analysis. The method assumed that the radiometric responses between forest with selective-logging effects and forest edges in contact with recent clear-cuts are related. The spatial frequency attributes of red/near infrared bands for edge areas were analyzed. Analysis of dispersion diagrams showed two groups of pixels that represent selective-logging areas. The attributes for size and radiometric distance representing these two groups were related to solar-elevation angle. The results suggest that detection of timber exploitation areas is limited because of the complexity of the selective-logging radiometric response. Thus, the accuracy of detecting selective logging can be influenced by the solar-elevation angle at the time of image acquisition. We conclude that images with lower solar-elevation angles are less reliable for delineation of selecting logging.
Resumo:
Tese de Doutoramento em Engenharia Eletrónica e de Computadores.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)