988 resultados para Radioactive waste disposal in the ocean
Resumo:
Drilling at site 207 (DSDP Leg 21), located on the broad summit of the Lord Howe Rise, bottomed in rhyolitic rocks. Sanidine concentrates from four samples of the rhyolite were dated by the 40Ar/39Ar total fusion method and conventional K-Ar method, and yielded concordant ages of 93.7 +/- 1.1 my, equivalent to the early part of the Upper Cretaceous. At this time the Lord Howe Rise, which has continental-type structure, is thought to have been emergent and adjacent to the eastern margin of the Australian-antarctic continent. Subsequent to 94 my ago and prior to deposition of Maastrichtian (70-65 myBP) marine sediments on top of the rhyolitic basement of the Lord Howe Rise, rifting occurred and the formation of the Tasman Basin began by sea-floor spreading with rotation of the Rise away from the margin of Australia. Subsidence of the Rise continued until Early Eocene (about 50 myBP), probably marking the end of sea-floor spreading in the Tasman Basin. These large scale movements relate to the breakup of this part of Gondwanaland in the Upper Cretaceous.
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 138 in the eastern equatorial Pacific Ocean were analyzed for variations in eolian accumulation rate and mean grain-size. Latitudinal and temporal patterns of these parameters showed important changes in the intensity of atmospheric circulation and eolian flux associated with the intertropical convergence zone (ITCZ) and suggested that eolian input parameters could be used to define its paleoposition through time. Modern atmospheric circulation in the equatorial region is weakest in the intertropical convergence zone and increases as the trade winds are approached to the north and south. Thus, the expected spatial pattern of eolian grain size would have the finest material deposited beneath the ITCZ and a coarsening of material in both directions away from this zone. Sediments from ODP Leg 138 show this pattern for much of the Pleistocene and Pliocene but, prior to about 4 Ma, begin to lose the northern coarse component suggesting that the ITCZ was located north of its present position during the late Miocene. Eolian flux records also show a latitudinal pattern of deposition associated with the position of the ITCZ that, similar to eolian grain-size variability, suggests a more northerly position of the ITCZ during the late Miocene. Overall, the regional input of eolian material to the equatorial Pacific has decreased throughout the late Neogene. This reduction in eolian input reflects climatic changes to relatively wetter conditions in the continental eolian source regions beginning during the late Pliocene.
Resumo:
A continuous 10-m-long section consisting of roughly two thirds Ethmodiscus rex (a diatom) and one third mixed planktonic foraminifera was identified in a core from 3800 m depth at 9°S on the Indian Ocean's 90°E Ridge. Radiocarbon dates place the onset of deposition of this layer at >30,000 years B.P. and its termination at close to 11,000 years B.P. However, precise dating of the foraminifera from the Ethmodiscus layer itself proved to be impossible owing to the presence of secondary calcite presumably precipitated from the pore waters. During the Holocene, high calcium carbonate content ooze free of diatoms was deposited at this locale. As the site currently lies beneath the pathway taken by upper ocean waters entering the Indian Ocean from the Pacific (via the Indonesian Straits), it appears that during glacial time, thermocline waters moving along this same path provided the silica and other nutrients required by these diatoms.
Resumo:
The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).
Resumo:
During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.