946 resultados para Radical behaviorism
Resumo:
Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
The kinetics of the solution free radical polymerization of N-vinylcaprolactam, in 1,4-dioxane and under various polymerization conditions was studied. Azobisisobutyronitrile and 3-mercaptopropionic acid were used as initiator and as chain transfer agent (CTA), respectively. The influence of monomer and initiator concentrations and polymerization temperature on the rate of polymerizations (R(p)) was investigated. In general, high conversions were obtained. The order with respect to initiator was consistent with the classical kinetic rate equation, while the order with respect to the monomer was greater than unity. The overall activation energy of 53.6 kJ mol(-1) was obtained in the temperature range 60-80 degrees C. The decreasing of the absolute molecular weights when increasing the CIA concentration was confirmed by GPC/SEC/LALS analyses. It was confirmed by UV-visible analyses the effect of molecular weights on the lower critical solution temperature of the polymers. It was also verified that the addition of the CTA influenced the kinetic of the polymerizations. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 118: 229-240, 2010
Resumo:
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
This contribution describes the development of a continuous emulsion copolymerization processs for vinyl acetate and n-butyl acrylate in a tubular reactor. Special features of this reactor include the use of oscillatory (pulsed) flow and internals (sieve plates) to prevent polymer fouling and promote good radial mixing, along with a controlled amount of axial mixing. The copolymer system studied (vinyl acetate and butyl acrylate) is strongly prone to composition drift due to very different reactivity ratios. An axially dispersed plug flow model, based on classical free radical copolymerization kinetics, was developed for this process and used successfully to optimize the lateral feeding profile to reduce compositional drift. An energy balance was included in the model equations to predict the effect of temperature variations on the process. The model predictions were validated with experimental data for monomer conversion, copolymer composition, average particle size, and temperature measured along the reactor length.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aqueous extract of mate, made from dried leaves of Ilex paraguariensis, St. Hilaire, was shown to be effective during chilled storage for up to 10 days in protecting lipids and vitamin E against oxidation in pre-cooked meat balls made from chicken breast added 0.5% salt and packed in atmospheric air. Extracts made with water, methanol, ethanol or 70% aqueous acetone were evaluated by comparing (1) total phenolic content, (2) radical scavenging capacity, (3) effect on lipid oxidation in a food emulsion model, and in liposomes. Based on the three-step evaluation, aqueous mate extract was preferred for food use. Dried leaves were further compared to dried rosemary leaves in chicken meat balls, and mate (0.05 and 0.10%) found to yield equal or better protection than rosemary at the same concentration against formation of secondary lipid oxidation products.
Resumo:
Samples of 15 second generation soy-based products (n = 3), commercially available, were analyzed for their protein and isoflavone contents and in vitro antioxidant activity, by means of the Folin-Ciocalteu reducing ability, DPPH radical scavenging capacity, and oxygen radical absorbance capacity. Isoflavone identification and quantification were performed by high-performance liquid chromatography. Products containing soy and/or soy-based ingredients represent important sources of protein in addition to the low fat amounts. However, a large variation in isoflavone content and in vitro antioxidant capacity was observed. The isoflavone content varied from 2.4 to 18.1 mg/100 g (FW), and soy kibe and soy sausage presented the highest amounts. Chocolate had the highest antioxidant capacity, but this fact was probably associated with the addition of cocoa liquor, a well-known source of polyphenolics. This study showed that the soy-based foods do not present a significant content of isoflavones when compared with the grain, and their in vitro antioxidant capacity is not related with these compounds but rather to the presence of other phenolics and synthetic antioxidants, such as sodium erythorbate. However, they may represent alternative sources and provide soy protein, isoflavones, and vegetable fat for those who are not ready to eat traditional soy foods.
Resumo:
The phenolic compounds content and antioxidant activity of seed and skin of pomace from the vinification of grape varieties widely produced in Brazil were investigated with a view to their exploitation as a potential source of natural antioxidants. There was a greater concentration of phenolic compounds in the seeds (2128 to 16,518 mg of catechin equivalents (CE)/100 g) than in the skins (660 to 1839 mg CE/100 g). The highest antioxidant activity values determined as DPPH radical-scavenging ability and ferric reducing-antioxidant power (FRAP) were found for the seeds of the Pinot Noir variety (16,925 mu mol Trolox equivalents (TE)/100 g and 21,492 mu mol Fe(2+)/100 g, respectively) and in the skin extracts of the Isabel variety (3640 mu mol TE/100 g and 4362 mu mol Fe(2+)/100 g, respectively). The skin of Cabernet Sauvignon and Primitivo varieties had the highest contents of anthocyanins (935 and 832 mg/100 g, respectively). The grape seed extracts were rich in oligomeric and polymeric flavanols. The data suggested that grape seed and skin extracts may be exploited as antioxidant agents. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the association among chemical parameters, the commercial value, and the antioxidant activity of Brazilian red wines using chemometric techniques. Twenty-nine samples from five different varieties were assessed. Samples were separated into three groups using hierarchical cluster analysis: cluster 1 presented the highest antioxidant activity towards DPPH (68.51% of inhibition) and ORAC (30,918.64 mu mol Trolox Equivalents/L), followed by cluster 3 (DPPH = 59.36% of inhibition: ORAC = 25,255.02 mu mol Trolox Equivalents/L) and then cluster 2 (DPPH = 46.67% of inhibition; ORAC = 19,395.74 gmol Trolox Equivalents/L). Although the correlation between the commercial value and the antioxidant activity on DPPH and ORAC was not statistically significant (P = 0.13 and P = 0.06, respectively), cluster 1 grouped the samples with higher commercial values. Cluster analysis applied to the variables suggested that non-anthocyanin flavonoids were the main phenolic class exerting antioxidant activity on Brazilian red wines. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.
Resumo:
The effect of thermal treatment on phenolic compounds and type 2 diabetes functionality linked to alpha-glucosidase and alpha-amylase inhibition and hypertension relevant angiotensin I-converting enzyme (ACE) inhibition were investigated in selected bean (Phaseolus vulgaris L,) cultivars from Peru and Brazil using in vitro models. Thermal processing by autoclaving decreased the total phenolic content in all cultivars, whereas the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity-linked antioxidant activity increased among Peruvian cultivars, alpha-Amylase and alpha-glucosidase inhibitory activities were reduced significantly after heat treatment (73-94% and 8-52%, respectively), whereas ACE inhibitory activity was enhanced (9-15%). Specific phenolic acids such as chlorogenic and caffeic acid increased moderately following thermal treatment (2-16% and 5-35%, respectively). No correlation was found between phenolic contents and functionality associated to antidiabetes and antihypertension potential, indicating that non phenolic compounds may be involved. Thermally processed bean cultivars are interesting sources of phenolic acids linked to high antioxidant activity and show potential for hypertension prevention.
Resumo:
Seed coats, cotyledons and hypocotyls from six Peruvian (Lupinus mutabilis Sweet) and two Brazilian (Lupinus albus and Lupinus angustifolius) lupin cultivars were assessed regarding their content of isoflavones and antioxidant capacity. Genistein and a genistein derivative were detected in seed coats and cotyledons from Peruvian cultivars. Total isoflavones ranged from 9.8 to 87, 16.1 to 30.8 and 1.3 to 6.1 mg/100 g of sample in fresh weight (expressed as genistein) in seed coat, cotyledon and hypocotyl fractions, respectively, from mutabilis species, whereas no isoflavones were detected in L. angustifolius and L. albus. A significant correlation (r = 0.99) was found between the total isoflavone levels and the antioxidant capacity measured by the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging method in all fractions of Peruvian samples. No condensed tannins were detected in any of the lupin cultivars. The H-6 Andean cultivar is promising for its high isoflavone content and antioxidant capacity. Insights from this study indicate that lupin cultivars of the mutabilis species have similar isoflavone profiles and that isoflavones are more concentrated in the cotyledon seed fraction than in the seed coat or hypocotyl fractions. (C) 2008 Elsevier Inc. All rights reserved.