951 resultados para Radiation-induced skin reactions
Resumo:
Penetration enhancers are chemicals that temporarily and reversibly diminish the barrier function of the outermost layer of skin, the stratum corneum, to facilitate drug delivery to and through the tissue. In the current study, the complex mechanisms by which 1,8-cineole, a potent terpene penetration enhancer, disrupts the stratum corneum barrier is investigated using post-mortem skin samples. In order to validate the use of excised tissue for these and related studies, a fibre optical probe coupled to an FT-Raman spectrometer compared spectroscopic information for human skin recorded from in vivo and in vitro sampling arrangements. Spectra from full-thickness (epidermis and dermis) post-mortem skin samples presented to the spectrometer with minimal sample preparation (cold acetone rinse) were compared with the in vivo system (the forearms of human volunteers). No significant differences in the Raman spectra between the in vivo and in vitro samples were observed, endorsing the use of post-mortem or surgical samples for this investigational work. Treating post-mortem samples with the penetration enhancer revealed some unexpected findings: while evidence for enhancer-induced disruption of the barrier lipid packing in the stratum corneum was detected in some samples, spectra from other samples revealed an increase in lipid order on treatment with the permeation promoter. These findings are consistent with phase-separation of the enhancer within the barrier lipid domains as opposed to homogeneous disruption of the lipid lamellae. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.
Resumo:
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.
Resumo:
Now that stratospheric ozone depletion has been controlled by the Montreal Protocol1, interest has turned to the effects of climate change on the ozone layer. Climate models predict an accelerated stratospheric circulation, leading to changes in the spatial distribution of stratospheric ozone and an increased stratosphere-to-troposphere ozone flux. Here we use an atmospheric chemistry climate model to isolate the effects of climate change from those of ozone depletion and recovery on stratosphere-to-troposphere ozone flux and the clear-sky ultraviolet radiation index—a measure of potential human exposure to ultraviolet radiation. We show that under the Intergovernmental Panel on Climate Change moderate emissions scenario, global stratosphere-to- troposphere ozone flux increases by 23% between 1965 and 2095 as a result of climate change. During this time, the clear-sky ultraviolet radiation index decreases by 9% in northern high latitudes — a much larger effect than that of stratospheric ozone recovery — and increases by 4% in the tropics, and by up to 20% in southern high latitudes in late spring and early summer. The latter increase in the ultraviolet index is equivalent to nearly half of that generated by the Antarctic ‘ozone hole’ that was created by anthropogenic halogens. Our results suggest that climate change will alter the tropospheric ozone budget and the ultraviolet index, which would have consequences for tropospheric radiative forcing, air quality and human and ecosystem health.
Resumo:
Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm−2 (1σ = 4.89) over the 2002–20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm−2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm−2) shows that the contribution of fires to the Earth system is not insignificant.
Resumo:
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud.Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse.The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming the sensing surface becomes normal to the solar beam direction at a maximum swing. Both approaches, essentially independent,give values that agree with theoretical expectations for the eclipse-induced radiation changes.
Resumo:
The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effect of increased UV radiation on photosynthesis estimated as in vivo chlorophyll fluorescence i.e. optimal quantum yield (F(v)/F(m)) and electron transport rate (ETR) in the green filamentous alga Zygnemopsis decussata (Streptophyta, Zygnematales) growing in the high mountain lake ""La Caldera"" (Sierra Nevada, Spain) at 3050 m altitude was evaluated. Two sets of in situ experiments were conducted: (1) On July 2006, F(v)/F(m) was measured throughout the day at different depths (0.1, 0.25, 0.5 and 1 m) and in the afternoon. ETR and phenolic compounds were determined. In addition, in order to analyze the effect of UV radiation, F(v)/F(m) was determined in algae incubated for 3 days at 0.5m under three different light treatments: PAR+UVA+UVB (PAB). PAR+UVA (PA) and PAR (P). (2) On August 2007, F(v)/F(m) was determined under PAB, PA and P treatments and desiccation/rehydration conditions. F(v)/F(m) decreased in algae growing in surface waters (0.1 m) but also at 1 m depth compared to that at 0.5 in depth. The decrease of F(v)/F(m) at noon due to photoinhibition was small (less than 10%) except in algae growing at 1 m depth (44%). The maximal electron transport rate was 3.5-5 times higher in algae growing at 0.25-0.5 m respectively than that at 0.1 and 1 m depth. These results are related to the accumulation of phenolic compounds: i.e. the algae at 0.25-0.5 in presentedrespectively about a 3-5 times higher concentration of phenolic compounds than that of algae at 0.1-1 m depth. The protection mechanisms seem to be stimulated by UVB radiation, since F(v)/F(m) was higher in the presence of UVB (PAB treatment) compared to PA or P treatments. UVA exerts the main photoinhibitory effect, not Only at midday, but also in the afternoon. UVB radiation also had a protective effect in algae grown under desiccation conditions for three days. During re-hydration, the rapid increase of F(v)/F(m) (after 1 h) was higher in the UVB-grown algae than in algae grown under UVA radiation. After 5 h. F(v)/F(m) values were similar in algae submitted to desiccation/rehydration under PAB and P treatments as they were in the control (submerged algae). The combined effect of desiccation and UVA produced the greatest decrease of photosynthesis in Z. decussata. Thifs UVB, in contrast to other species, may support the recovery process. Z. decussata can acclimate to severe stress, conditions in this high mountain lake by the photoprotection mechanism induced by UVB radiation through dynamic photoinhibition and the accumulation of phenolic compounds (UV screen and antioxidant substances).
Resumo:
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spleen or spleen plus bone marrow cells from (BALB/c x C57Bl/6)F1 donors were transferred into BALB/c recipients 21 days before skin or cardiac transplantation. Prolonged graft survival was observed on recipients treated with the mixture of donor-derived cells as compared to those treated with spleen cells alone. We evaluated the expression of CD45RB and CD44 by splenic CD4(+) and CD8(+) T cells 7 and 21 days after donor cell transfer. The populations of CD8(+)CD45RB(low) and CD8(+)CD44(high) cells were significantly decreased in mice pre-treated with donor spleen and bone marrow cells as compared to animals treated with spleen cells only, although these cells expanded in both groups when compared to an earlier time-point. No differences were observed regarding CD4+ T cell population when recipients of donor-derived cells were compared. An enhanced production of IL-10 was observed seven days after transplantation in the supernatants of spleen cell cultures of mice treated with spleen and bone marrow cells. Taken together these data suggest that donor-derived bone marrow cells modulate the sensitization of the recipient by semi-allogeneic spleen cells in part by delaying the generation of activated/memory CD8(+) T cells leading to enhanced graft survival. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of different gamma-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1 x 10(6) spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different gamma-radiation doses used. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filaments and secretion of MMP1. Human dermal fibroblasts treated with 50-mu M verapamil changed their normal spindle-shaped morphology to stellate. Treated cells showed discrete reorganisation of actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. We hypothesised that these effects would be associated to lower levels of cytosolic Ca(2+). Indeed, short time loading with calcium green confirmed that verapamil-treated fibroblasts exhibited lower intracellular calcium levels compared to controls. We also observed that verapamil increases the secretion of MMP1 in cultured fibroblasts, as demonstrated by zymography, specific substrate assays and immunoblot. The morphological alterations induced by verapamil are neither cytotoxic nor associated with other dramatic cytoskeleton alterations. Thus we may conclude that this drug enhances collagenase secretion and does not disrupt the major tracks necessary to deliver these enzymes in the extracellular space. The present results suggested that verapamil could be used at physiological levels to enhance collagen I breakdown, and maybe considered a potential candidate for intralesional therapy of wound healing and fibrocontractive diseases. (C) 2010 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
Background and Objective. Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1 beta level in LPS-induced pulmonary inflammation. Study Design/Methodology. Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1P in BAL was determined by ELISA and IL-1P mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. Results. LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1 beta in BAL and IL-1 beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. Conclusion. LLLT reduced the lung permeability by a mechanism in which the IL-1 beta seems to have an important role.
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.