988 resultados para Radial glia
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Resumo:
The morphological and functional diversity of astrocytes, and their essential contribution in physiological and pathological conditions, are starting to emerge. However, experimental systems to investigate neuron-glia interactions and develop innovative approaches for the treatment of central nervous system (CNS) disorders are still very limited. Fluorescent reporter genes have been used to visualize populations of astrocytes and produce an atlas of gene expression in the brain. Knock-down or knock-out of astrocytic proteins using transgenesis have also been developed, but these techniques remain complex and time-consuming. Viral vectors have been developed to overexpress or silence genes of interest as they can be used for both in vitro and in vivo studies in adult mammalian species. In most cases, high transduction efficiency and long-term transgene expression are observed in neurons but there is limited expression in astrocytes. Several strategies have been developed to shift the tropism of lentiviral vectors (LV) and allow local and controlled gene expression in glial cells. In this review, we describe how modifications of the interaction between the LV envelope glycoprotein and the surface receptor molecules on target cells, or the integration of cell-specific promoters and miRNA post-transcriptional regulatory elements have been used to selectively express transgenes in astrocytes.
Resumo:
PURPOSE: Diabetic retinopathy (DR) is a leading cause of blindness, yet pertinent animal models are uncommon. The sand rat (Psammomys obesus), exhibiting diet-induced metabolic syndrome, might constitute a relevant model. METHODS: Adult P. obesus (n = 39) were maintained in captivity for 4 to 7 months and fed either vegetation-based diets (n = 13) or standard rat chow (n = 26). Although plant-fed animals exhibited uniform body weight and blood glucose levels over time, nearly 60% of rat chow-raised animals developed diabetes-like symptoms (test group). Animals were killed, and their eyes and vitreous were processed for immunochemistry. RESULTS: Compared with plant-fed animals, diabetic animals showed many abnormal vascular features, including vasodilation, tortuosity, and pericyte loss within the blood vessels, hyperproteinemia and elevated ratios of proangiogenic and antiangiogenic growth factors in the vitreous, and blood-retinal barrier breakdown. Furthermore, there were statistically significant decreases in retinal cell layer thicknesses and densities, accompanied by profound alterations in glia (downregulation of glutamine synthetase, glutamate-aspartate transporter, upregulation of glial fibrillar acidic protein) and many neurons (reduced expression of protein kinase Cα and Cξ in bipolar cells, axonal degeneration in ganglion cells). Cone photoreceptors were particularly affected, with reduced expression of short- and mid-/long-wavelength opsins. Hypercaloric diet nondiabetic animals showed intermediate values. CONCLUSIONS: Simple dietary modulation of P. obesus induces a rapid and severe phenotype closely resembling human type 2 DR. This species presents a valuable novel experimental model for probing the neural (especially cone photoreceptor) pathogenic modifications that are difficult to study in humans and for screening therapeutic strategies.
Resumo:
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
OBJECTIVES: In vitro mechanical injury of articular cartilage is useful to identify events associated with development of post-traumatic osteoarthritis (OA). To date, many in vitro injury models have used animal cartilage despite the greater clinical relevance of human cartilage. We aimed to characterize a new in vitro injury model using elderly human femoral head cartilage and compare its behavior to that of an existing model with adult bovine humeral head cartilage. DESIGN: Mechanical properties of human and bovine cartilage disks were characterized by elastic modulus and hydraulic permeability in radially confined axial compression, and by Young's modulus, Poisson's ratio, and direction-dependent radial strain in unconfined compression. Biochemical composition was assessed in terms of tissue water, solid, and glycosaminoglycan (GAG) contents. Responses to mechanical injury were assessed by observation of macroscopic superficial tissue cracks and histological measurements of cell viability following single injurious ramp loads at 7 or 70%/s strain rate to 3 or 14 MPa peak stress. RESULTS: Confined compression moduli and Young's moduli were greater in elderly human femoral cartilage vs adult bovine humeral cartilage whereas hydraulic permeability was less. Radial deformations of axially compressed explant disks were more anisotropic (direction-dependent) for the human cartilage. In both cartilage sources, tissue cracking and associated cell death during injurious loading was common for 14 MPa peak stress at both strain rates. CONCLUSION: Despite differences in mechanical properties, acute damage induced by injurious loading was similar in both elderly human femoral cartilage and adult bovine humeral cartilage, supporting the clinical relevance of animal-based cartilage injury models. However, inherent structural differences such as cell density may influence subsequent cell-mediated responses to injurious loading and affect the development of OA.
Resumo:
Although high-resolution peripheral quantitative computed tomography (HRpQCT) and central quantitative computed tomography (QCT) studies have shown bone structural differences between Chinese American (CH) and white (WH) women, these techniques are not readily available in the clinical setting. The trabecular bone score (TBS) estimates trabecular microarchitecture from dual-energy X-ray absorptiometry spine images. We assessed TBS in CH and WH women and investigated whether TBS is associated with QCT and HRpQCT indices. Areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry, lumbar spine (LS) TBS, QCT of the LS and hip, and HRpQCT of the radius and tibia were performed in 71 pre- (37 WH and 34 CH) and 44 postmenopausal (21 WH and 23 CH) women. TBS did not differ by race in either pre- or postmenopausal women. In the entire cohort, TBS positively correlated with LS trabecular volumetric bone mineral density (vBMD) (r = 0.664), femoral neck integral (r = 0.651), trabecular (r = 0.641) and cortical vBMD (r = 0.346), and cortical thickness (C/I; r = 0.540) by QCT (p < 0.001 for all). TBS also correlated with integral (r = 0.643), trabecular (r = 0.574) and cortical vBMD (r = 0.491), and C/I (r = 0.541) at the total hip (p < 0.001 for all). The combination of TBS and LS aBMD predicted more of the variance in QCT measures than aBMD alone. TBS was associated with all HRpQCT indices (r = 0.20-0.52) except radial cortical thickness and tibial trabecular thickness. Significant associations between TBS and measures of HRpQCT and QCT in WH and CH pre- and postmenopausal women demonstrated here suggest that TBS may be a useful adjunct to aBMD for assessing bone quality.
Resumo:
Background: Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear. Methods: We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI). Results: We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls. Limitations: The major limitation of our study is the small number of patients with bipolar disorder. Conclusion: Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Resumo:
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Resumo:
Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123
Resumo:
Neste trabalho procura-se utilizar modelos de previsão de séries temporais para prever a produção da energia elétrica a partir da energia eólica em Cabo Verde, particularmente na ilha de Santiago. É um problema que tem recebido especial atenção dos pesquisadores nos últimos anos. Prever o futuro, e em especial o comportamento de séries temporais, é fundamental em análises e apoio à tomada de decisões, e continua sendo um desafio para a estatística e para computação. Foram utilizados modelos, Holt-Winters, ARIMA e redes neuronais artificiais, Função de Base Radial (RNAs-RBF) e Perceptron de múltiplas camadas (RNAs- MLP). O modelo Holt-Winters é um modelo de previsão exponencial, conhecido por lidar com elementos de tendência e sazonalidade de uma série temporal. O modelo ARIMA que possui apenas uma variável, descreve o comportamento de uma variável em termos de seus valores passados. As redes neurais têm-se mostrado grandes ferramentas na aplicação de previsões de séries temporais. Neste contexto, neste trabalho propõe-se a realização de uma análise comparativa desses modelos não-lineares para a previsão, tentando encontrar qual o modelo que melhor se adapta à série temporal. Todo o trabalho foi realizado com recurso ao programa estatístico R versão 3.0.1 (2013-05- 16)
Resumo:
Solepyris Azevedo is a rarely collected Neotropical genus. It is differentiated from other Sclerodermini genera by having the fore wing venation with a single large closed cell and currently is monotypic containing S. unicus Azevedo. A second species, Solepyris montuosus, sp. nov., from Brazil is described and illustrated. This new species is diagnosed by having radial vein of the fore wing long. An amended diagnosis of Solepyris unicus Azevedo is included. A key for the two species of Solepyris is provided.
Resumo:
The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the photocoagulation site and around it. Confocal microscopy demonstrates that the vessels throughout the path lesion are located within the neuroretina while in the choroid (after separation of the neural retina) only GFAP-positive but no lectin-positive cells can be seen. The involvement of infiltrating inflammatory cells in these remodeling and healing processes remained minimal throughout the study period. During the 4 weeks following krypton laser photocoagulation in the mouse eye, processes of wound healing and remodeling appear to be driven by cells (and vessels) originating from the retina.
Resumo:
The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.