998 resultados para Rac1 Small Gtpases
Resumo:
At the present time hydrobiological indicators are widely used for the control of surface water quality. Results of the applying of methods suggested at the 1st Soviet-American seminar (1975), development of improved methods and estimation of their usefulness for various conditions are presented in this report. Among the criteria permitting an estimation of the degree and character of changes in water quality and their connection with the functioning of river ecosystems in general, the biological tests of natural waters appears to be the most universal one and is being carried out in two main directions — ecological and physiological. This study summarises approaches in both directions.
Resumo:
The purpose of this thesis is to characterize the behavior of the smallest turbulent scales in high Karlovitz number (Ka) premixed flames. These scales are particularly important in the two-way coupling between turbulence and chemistry and better understanding of these scales will support future modeling efforts using large eddy simulations (LES). The smallest turbulent scales are studied by considering the vorticity vector, ω, and its transport equation.
Due to the complexity of turbulent combustion introduced by the wide range of length and time scales, the two-dimensional vortex-flame interaction is first studied as a simplified test case. Numerical and analytical techniques are used to discern the dominate transport terms and their effects on vorticity based on the initial size and strength of the vortex. This description of the effects of the flame on a vortex provides a foundation for investigating vorticity in turbulent combustion.
Subsequently, enstrophy, ω2 = ω • ω, and its transport equation are investigated in premixed turbulent combustion. For this purpose, a series of direct numerical simulations (DNS) of premixed n-heptane/air flames are performed, the conditions of which span a wide range of unburnt Karlovitz numbers and turbulent Reynolds numbers. Theoretical scaling analysis along with the DNS results support that, at high Karlovitz number, enstrophy transport is controlled by the viscous dissipation and vortex stretching/production terms. As a result, vorticity scales throughout the flame with the inverse of the Kolmogorov time scale, τη, just as in homogeneous isotropic turbulence. As τη is only a function of the viscosity and dissipation rate, this supports the validity of Kolmogorov’s first similarity hypothesis for sufficiently high Ka numbers (Ka ≳ 100). These conclusions are in contrast to low Karlovitz number behavior, where dilatation and baroclinic torque have a significant impact on vorticity within the flame. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and lastly the physical configuration.
Next, the isotropy of vorticity is assessed. It is found that given a sufficiently large value of the Karlovitz number (Ka ≳ 100) the vorticity is isotropic. At lower Karlovitz numbers, anisotropy develops due to the effects of the flame on the vortex stretching/production term. In this case, the local dynamics of vorticity in the strain-rate tensor, S, eigenframe are altered by the flame. At sufficiently high Karlovitz numbers, the dynamics of vorticity in this eigenframe resemble that of homogeneous isotropic turbulence.
Combined, the results of this thesis support that both the magnitude and orientation of vorticity resemble the behavior of homogeneous isotropic turbulence, given a sufficiently high Karlovitz number (Ka ≳ 100). This supports the validity of Kolmogorov’s first similarity hypothesis and the hypothesis of local isotropy under these condition. However, dramatically different behavior is found at lower Karlovitz numbers. These conclusions provides/suggests directions for modeling high Karlovitz number premixed flames using LES. With more accurate models, the design of aircraft combustors and other combustion based devices may better mitigate the detrimental effects of combustion, from reducing CO2 and soot production to increasing engine efficiency.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.
Resumo:
About 40 years have passed since the discovery of picophytoplankton; the present knowledge of the taxonomy, physiology and ecology of these tiny photoautotrophic cells offers new perspectives on the importance of the microbial contribution to global biogeochemical cycles and food webs. This review focuses on the relationships among the components of picophytoplankton (picocyanobacteria and the picoplanktic eukaryotes) and biotic and abiotic environmental factors. The dynamics of picophytoplankton in aquatic ecosystems are strictly dependent upon basin size and trophy, temperature, and nutrient and light limitation, but they are also regulated by grazing and viral-induced lysis. The review considers: the pros and cons of the molecular approach to the study of the taxonomy of freshwater Synechococcus spp.; the importance of ecological aspects in understanding the puzzle of picophytoplankton phylogeny (genotype vs ecotype); and the role of biotic vs abiotic interactions in controlling picophytoplankton dynamics. Biotic, top-down control mechanisms are reviewed as well as knowledge of other biological interactions.
Resumo:
About 40 years have passed since the discovery of picophytoplankton; the present knowledge of the taxonomy, physiology and ecology of these tiny photoautotrophic cells offers new perspectives on the importance of the microbial contribution to global biogeochemical cycles and food webs. This review focuses on the relationships among the components of picophytoplankton (picocyanobacteria and the picoplanktic eukaryotes) and biotic and abiotic environmental factors. The dynamics of picophytoplankton in aquatic ecosystems are strictly dependent upon basin size and trophy, temperature, and nutrient and light limitation, but they are also regulated by grazing and viral-induced lysis. The review considers: the pros and cons of the molecular approach to the study of the taxonomy of freshwater Synechococcus spp.; the importance of ecological aspects in understanding the puzzle of picophytoplankton phylogeny (genotype vs ecotype); and the role of biotic vs abiotic interactions in controlling picophytoplankton dynamics. Biotic, top-down control mechanisms are reviewed as well as knowledge of other biological interactions.