980 resultados para RNA transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using numerical simulations, we investigate the underlying physical effects responsible for the overall organization of chromosomal territories in interphase nuclei. In particular, we address the following three questions: (i) why are chromosomal territories with relatively high transcriptional activity on average, closer to the centre of cell's nucleus than those with the lower activity? (ii) Why are actively transcribed genes usually located at the periphery of their chromosomal territories? (iii) Why are pair-wise contacts between active and inactive genes less frequent than those involving only active or only inactive genes? We show that transcription factories-mediated contacts between active genes belonging to different chromosomal territories are instrumental for all these features of nuclear organization to emerge spontaneously due to entropic effects arising when chromatin fibres are highly crowded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Connexin43 (Cx43), a membrane protein involved in the control of cell-to-cell communication, is thought to play a role in the contractility of the vascular wall and in the electrical coupling of cardiac myocytes. The aim of this study was to investigate the effects of experimental hypertension on Cx43 expression in rat aorta and heart. METHODS AND RESULTS: Rats were made hypertensive after one renal artery was clipped (two kidney, one-clip renal model) or after the administration of deoxycorticosterone and salt (DOCA-salt model). After 4 weeks, all rats showed a similar increase in intra-arterial mean blood pressure and in the thickness of both the aortic wall and the heart. Northern blot analysis of aorta mRNA and immunolabeling for Cx43 showed that hypertensive rats expressed twice as much Cx43 in aorta as the control animals. In contrast, no difference in Cx43 mRNA or in the immunolabeled protein was observed in heart. CONCLUSIONS: The results show that rats exhibiting a similar degree of blood pressure elevation, as the result of different mechanisms, feature a comparable increase in Cx43 gene expression, which was observed in the aortic but not in the cardiac muscle. These data suggest that localized mechanical forces induced by hypertension are major tissue-specific regulators of Cx43 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orphan receptors of the FTZ-F1-related group of nuclear receptors (xFF1r) were identified in Xenopus laevis by isolation of cDNAs from a neurula stage library. Two cDNAs were found, which encode full length, highly related receptor proteins, xFF1rA and B, whose closet relative known so far is the murine LRH-1 orphan receptor. xFF1rA protein expressed by a recombinant vaccinia virus system specifically binds to FTZ-F1 response elements (FRE; PyCAAGGPyCPu). In cotransfection studies, xFF1rA constitutively activates transcription, in a manner dependent on the number of FREs. The amounts of at least four mRNAs encoding full-length receptors greatly increase between gastrula and early tailbud stages and decrease at later stages. At early tailbud stages, xFTZ-F1-related antigens are found in all nuclei of the embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The ultimate goal of synthetic biology is the conception and construction of genetic circuits that are reliable with respect to their designed function (e.g. oscillators, switches). This task remains still to be attained due to the inherent synergy of the biological building blocks and to an insufficient feedback between experiments and mathematical models. Nevertheless, the progress in these directions has been substantial. Results: It has been emphasized in the literature that the architecture of a genetic oscillator must include positive (activating) and negative (inhibiting) genetic interactions in order to yield robust oscillations. Our results point out that the oscillatory capacity is not only affected by the interaction polarity but by how it is implemented at promoter level. For a chosen oscillator architecture, we show by means of numerical simulations that the existence or lack of competition between activator and inhibitor at promoter level affects the probability of producing oscillations and also leaves characteristic fingerprints on the associated period/amplitude features. Conclusions: In comparison with non-competitive binding at promoters, competition drastically reduces the region of the parameters space characterized by oscillatory solutions. Moreover, while competition leads to pulse-like oscillations with long-tail distribution in period and amplitude for various parameters or noisy conditions, the non-competitive scenario shows a characteristic frequency and confined amplitude values. Our study also situates the competition mechanism in the context of existing genetic oscillators, with emphasis on the Atkinson oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are “genomic fossils” valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome’s structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction (∼80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the ∼1% of the human genome in the ENCODE regions, only about half of the transcriptionally active regions (TARs) identified with tiling microarrays correspond to annotated exons. Here we categorize this large amount of “unannotated transcription.” We use a number of disparate features to classify the 6988 novel TARs—array expression profiles across cell lines and conditions, sequence composition, phylogenetic profiles (presence/absence of syntenic conservation across 17 species), and locations relative to genes. In the classification, we first filter out TARs with unusual sequence composition and those likely resulting from cross-hybridization. We then associate some of those remaining with proximal exons having correlated expression profiles. Finally, we cluster unclassified TARs into putative novel loci, based on similar expression and phylogenetic profiles. To encapsulate our classification, we construct a Database of Active Regions and Tools (DART.gersteinlab.org). DART has special facilities for rapidly handling and comparing many sets of TARs and their heterogeneous features, synchronizing across builds, and interfacing with other resources. Overall, we find that ∼14% of the novel TARs can be associated with known genes, while ∼21% can be clustered into ∼200 novel loci. We observe that TARs associated with genes are enriched in the potential to form structural RNAs and many novel TAR clusters are associated with nearby promoters. To benchmark our classification, we design a set of experiments for testing the connectivity of novel TARs. Overall, we find that 18 of the 46 connections tested validate by RT-PCR and four of five sequenced PCR products confirm connectivity unambiguously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powdery mildew is an important disease of wheat caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. This pathogen invades exclusively epidermal cells after penetrating directly through the cell wall. Because powdery mildew colonizes exclusively epidermal cells, it is of importance not only to identify genes which are activated, but also to monitor tissue specificity of gene activation. Acquired resistance of wheat to powdery mildew can be induced by a previous inoculation with the non-host pathogen B. graminis f. sp. hordei, the causal agent of barley powdery mildew. The establishment of the resistant state is accompanied by the activation of genes. Here we report the tissue-specific cDNA-AFLP analysis and cloning of transcripts accumulating 6 and 24 h after the resistance-inducing inoculation with B. graminis f. sp. hordei. A total of 25,000 fragments estimated to represent about 17,000 transcripts were displayed. Out of these, 141 transcripts, were found to accumulate after Bgh inoculation using microarray hybridization analysis. Forty-four accumulated predominantly in the epidermis whereas 76 transcripts accumulated mostly in mesophyll tissue.