958 resultados para REVERSE TRANSCRIPTION-PCR
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) for the detection of respiratory syncytial virus (RSV) genomes. The primers were designed from published sequences and selected from conserved regions of the genome encoding for the N protein of subgroups A and B of RSV. PCR was applied to 20 specimens from children admitted to the respiratory ward of "William Soler" Pediatric Hospital in Havana City with a clinical diagnosis of bronchiolitis. The PCR was compared with viral isolation and with an indirect immunofluorescence technique that employs monoclonal antibodies of subgroups A and B. Of 20 nasopharyngeal exudates, 10 were found positive by the three assayed methods. In only two cases, samples that yielded positive RNA-PCR were found negative by indirect immunofluorescence and cell culture. Considering viral isolation as the "gold standard" technique, RNA-PCR had 100% sensitivity and 80% specificity. RNA-PCR is a specific and sensitive technique for the detection of the RSV genome. Technical advantages are discussed
Resumo:
A rapid identification of dengue viruses from clinical samples by using a nested reverse transcriptase-polymerase chain reaction (RT-PCR) procedure was carried out for diagnostic and epidemiological purposes. RT-PCR identified DEN-1 and DEN-2 viruses in 41% (41/100) of previously confirmed cases and provided an accurate confirmation of DHF in four fatal cases. RT-PCR was also useful for detecting and typing dengue viruses in suspected cases, allowing a rapid identification of new serotypes in endemic areas
Resumo:
Despite the central role of quantitative PCR (qPCR) in the quantification of mRNA transcripts, most analyses of qPCR data are still delegated to the software that comes with the qPCR apparatus. This is especially true for the handling of the fluorescence baseline. This article shows that baseline estimation errors are directly reflected in the observed PCR efficiency values and are thus propagated exponentially in the estimated starting concentrations as well as 'fold-difference' results. Because of the unknown origin and kinetics of the baseline fluorescence, the fluorescence values monitored in the initial cycles of the PCR reaction cannot be used to estimate a useful baseline value. An algorithm that estimates the baseline by reconstructing the log-linear phase downward from the early plateau phase of the PCR reaction was developed and shown to lead to very reproducible PCR efficiency values. PCR efficiency values were determined per sample by fitting a regression line to a subset of data points in the log-linear phase. The variability, as well as the bias, in qPCR results was significantly reduced when the mean of these PCR efficiencies per amplicon was used in the calculation of an estimate of the starting concentration per sample.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.
Resumo:
Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.
Resumo:
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Resumo:
The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.
Resumo:
BACKGROUND: The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. RESULTS: We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff < or = 0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p < or = 0.05) along the anterior-posterior axis was observed. CONCLUSION: All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression.
Resumo:
Hypertension and congenital aortic valve malformations are frequent causes of ascending aortic aneurysms. The molecular mechanisms of aneurysm formation under these circumstances are not well understood. Reference genes for gene activity studies in aortic tissue that are not influenced by aortic valve morphology and its hemodynamic consequences, aortic dilatation, hypertension, or antihypertensive medication are not available so far. This study determines genes in ascending aortic tissue that are independent of these parameters. Tissue specimens from dilated and undilated ascending aortas were obtained from 60 patients (age ≤70 years) with different morphologies of the aortic valve (tricuspid undilated n = 24, dilated n = 11; bicuspid undilated n = 6, dilated n = 15; unicuspid dilated n = 4). Of the studied individuals, 36 had hypertension, and 31 received ACE inhibitors or AT1 receptor antagonists. The specimens were obtained intraoperatively from the wall of the ascending aorta. We analyzed the expression levels of 32 candidate reference genes by quantitative RT-PCR (RT-qPCR). Differential expression levels were assessed by parametric statistics. The expression analysis of these 32 genes by RT-qPCR showed that EIF2B1, ELF1, and PPIA remained constant in their expression levels in the different specimen groups, thus being insensitive to aortic valve morphology, aortic dilatation, hypertension, and medication with ACE inhibitors or AT1 receptor antagonists. Unlike many other commonly used reference genes, the genes EIF2B1, ELF1, and PPIA are neither confounded by aortic comorbidities nor by antihypertensive medication and therefore are most suitable for gene expression analysis of ascending aortic tissue.
Resumo:
Background: Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results: Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions: The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Resumo:
During the influenza pandemic of 2009, the A(H1N1)pdm09, A/H3N2 seasonal and influenza B viruses were observed to be co-circulating with other respiratory viruses. To observe the epidemiological pattern of the influenza virus between May 2009-August 2011, 467 nasopharyngeal aspirates were collected from children less than five years of age in the city of Salvador. In addition, data on weather conditions were obtained. Indirect immunofluorescence, real-time transcription reverse polymerase chain reaction (RT-PCR), and sequencing assays were performed for influenza virus detection. Of all 467 samples, 34 (7%) specimens were positive for influenza A and of these, viral characterisation identified Flu A/H3N2 in 25/34 (74%) and A(H1N1)pdm09 in 9/34 (26%). Influenza B accounted for a small proportion (0.8%) and the other respiratory viruses for 27.2% (127/467). No deaths were registered and no pattern of seasonality or expected climatic conditions could be established. These observations are important for predicting the evolution of epidemics and in implementing future anti-pandemic measures.
Resumo:
In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.
Resumo:
For the ∼1% of the human genome in the ENCODE regions, only about half of the transcriptionally active regions (TARs) identified with tiling microarrays correspond to annotated exons. Here we categorize this large amount of “unannotated transcription.” We use a number of disparate features to classify the 6988 novel TARs—array expression profiles across cell lines and conditions, sequence composition, phylogenetic profiles (presence/absence of syntenic conservation across 17 species), and locations relative to genes. In the classification, we first filter out TARs with unusual sequence composition and those likely resulting from cross-hybridization. We then associate some of those remaining with proximal exons having correlated expression profiles. Finally, we cluster unclassified TARs into putative novel loci, based on similar expression and phylogenetic profiles. To encapsulate our classification, we construct a Database of Active Regions and Tools (DART.gersteinlab.org). DART has special facilities for rapidly handling and comparing many sets of TARs and their heterogeneous features, synchronizing across builds, and interfacing with other resources. Overall, we find that ∼14% of the novel TARs can be associated with known genes, while ∼21% can be clustered into ∼200 novel loci. We observe that TARs associated with genes are enriched in the potential to form structural RNAs and many novel TAR clusters are associated with nearby promoters. To benchmark our classification, we design a set of experiments for testing the connectivity of novel TARs. Overall, we find that 18 of the 46 connections tested validate by RT-PCR and four of five sequenced PCR products confirm connectivity unambiguously.
Resumo:
Purpose. To investigate the role of the myocyte enhancer factor 2 (Mef2) transcription factor family in retinal diseases, Mef2c expression was assessed during retinal degeneration in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA). Mef2c-dependent expression of photoreceptor-specific genes was further addressed. Methods. Expression of Mef2 members was analyzed by oligonucleotide microarray, quantitative PCR (qPCR) and in situ hybridization. Mef2c-dependent transcriptional activity was assayed by luciferase assay in HEK293T cells. Results. Mef2c was the only Mef2 member markedly downregulated during retinal degeneration in Rpe65(-/-) mice. Mef2c mRNA level was decreased by more than 2 fold at 2 and 4 months and by 3.5 fold at 6 months in retinas of Rpe65(-/-) mice. Downregulation of Mef2c at the protein level was confirmed in Rpe65(-/-) retinas. The decrease in Mef2c mRNA levels in the developing Rpe65(-/-) retinas, from post-natal day (P)13 onward, was concomitant with the decreased expression of the rod-specific transcription factors Nrl and Nr2e3. Nrl was further shown to drive Mef2c transcriptional activity, supporting a physiological role for Mef2c in the retina. In addition, Mef2c appeared to act as a transcriptional repressor of its own expression, as well as those of the retina-specific retinal G-protein coupled receptor (Rgr), rhodopsin and M-opsin genes. Conclusions. These findings highlight the early altered regulation of the rod-specific transcriptional network in Rpe65-related disease. They further indicate that Mef2c may act as a novel transcription factor involved in the development and the maintenance of photoreceptor cells.