998 resultados para REPLACEMENT TECHNIQUES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was carried out to measure the effects of a supplementary multi enzyme on growth performance , survival rate and apparent protein digestibility of rainbow trout fed some diets containing different amounts of soy bean meal. Five exprimental diets with replacement of 25, 50, 75 and 100 percent of fish meal protein by soy bean meal protein were made and 0, 500 and 1000 ppm dosages of supplementary multi enzyme had used in each of them. By the means a diet with fish meal as the only source of protein has used as the control. So this study had 13 treatments. The trouts in 89.40±4.01 gr mean weight were stocked in 39 experimental fiberglass tanks in abundance of 30 fish per any tank. These specimens fed experimental diets for 8 weeks and ten of them in each tank fed same diets which added Cr2O3 to them for one more week to measure the apparent protein digestibility in them. The results shown that supplementary multi enzyme (Avizyme) which contains Protease , Amylase and Xylanase , caused increases in growth performance , survival rate and apparent protein digestibility in trouts which fed soybean meal. Also this study shown that using 1000 ppm of Avizyme in diets which containing soybean meal had the best results and the diet which contained 39 % soybean meal with this amount of enzymes, had no significant differences by the control in any of the studied factors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of standardized methods used by AQD for the spawning of seabass (Lates calcarifer) and the rearing of fry in the hatchery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agar-bearing seaweeds Gracilaria and Gelidium grow abundantly in the Asia-Pacific region. Production and post-harvest techniques and methods for processing Gracilaria to produce agar suitable for local market is necessary to increase the meager income of coastal dwellers. A flow diagram of a village level agar production is provided. A guide is also given for the quality of dried seaweeds, which are divided into 3 classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of farming methods developed by the SEAFDEC Aquaculture Department for 3 different seaweeds: 1) Bottom line culture method for Kappaphycus; 2) Pond culture of Gracilaria; and, 3) Gracilariopsis bailinae, the new seaweed on the block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech recognition systems typically contain many Gaussian distributions, and hence a large number of parameters. This makes them both slow to decode speech, and large to store. Techniques have been proposed to decrease the number of parameters. One approach is to share parameters between multiple Gaussians, thus reducing the total number of parameters and allowing for shared likelihood calculation. Gaussian tying and subspace clustering are two related techniques which take this approach to system compression. These techniques can decrease the number of parameters with no noticeable drop in performance for single systems. However, multiple acoustic models are often used in real speech recognition systems. This paper considers the application of Gaussian tying and subspace compression to multiple systems. Results show that two speech recognition systems can be modelled using the same number of Gaussians as just one system, with little effect on individual system performance. Copyright © 2009 ISCA.