889 resultados para REPEATS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terminal regions (last 20 kb) of Saccharomyces cerevisiae chromosomes universally contain blocks of precise sequence similarity to other chromosome terminal regions. The left and right terminal regions are distinct in the sense that the sequence similarities between them are reverse complements. Direct sequence similarity occurs between the left terminal regions and also between the right terminal regions, but not between any left ends and right ends. With minor exceptions the relationships range from 80% to 100% match within blocks. The regions of similarity are composites of familiar and unfamiliar repeated sequences as well as what could be considered “single-copy” (or better “two-copy”) sequences. All terminal regions were compared with all other chromosomes, forward and reverse complement, and 768 comparisons are diagrammed. It appears there has been an extensive history of sequence exchange or copying between terminal regions. The subtelomeric sequences fall into two classes. Seventeen of the chromosome ends terminate with the Y′ repeat, while 15 end with the 800-nt “X2” repeats just adjacent to the telomerase simple repeats. The just-subterminal repeats are very similar to each other except that chromosome 1 right end is more divergent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

JC virus is activated to replicate in glial cells of many AIDS patients with neurological disorders. In human glial cells, the human immunodeficiency virus 1 (HIV-1) Tat protein activates the major late promoter of JC virus through a Tat-responsive DNA element, termed upTAR, which is a recognition site for cellular Purα, a sequence-specific single-stranded DNA binding protein implicated in cell cycle control of DNA replication and transcription. Tat interacts with two leucine-rich repeats in Purα to form a complex that can be immunoprecipitated from cell extracts. Tat enhances the ability of purified glutathione S-transferase-Purα (GST-Purα) to bind the upTAR element. Tat acts synergistically with Purα, in a cell-cycle-dependent manner, to activate transcription at an upTAR element placed upstream of a heterologous promoter. Since Purα is ubiquitously expressed in human cells and since PUR elements are located near many promoters and origins of replication, the Tat-Purα interaction may be implicated in effects of HIV-1 throughout the full range of HIV-1-infected cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the F-type ATPases, which use a proton gradient to generate ATP, the V-type enzymes use ATP to actively transport protons into organelles and extracellular compartments. We describe here the structure of the H-subunit (also called Vma13p) of the yeast enzyme. This is the first structure of any component of a V-type ATPase. The H-subunit is not required for assembly but plays an essential regulatory role. Despite the lack of any apparent sequence homology the structure contains five motifs similar to the so-called HEAT or armadillo repeats seen in the importins. A groove, which is occupied in the importins by the peptide that targets proteins for import into the nucleus, is occupied here by the 10 amino-terminal residues of subunit H itself. The structural similarity suggests how subunit H may interact with the ATPase itself or with other proteins. A cleft between the amino- and carboxyl-terminal domains also suggests another possible site of interaction with other factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the isolation and characterization of a cDNA encoding maize (Zea mays L.) nucleoredoxin (NRX), a novel nuclear protein that is a member of the thioredoxin (TRX) superfamily. NRX is composed of three TRX-like modules arranged as direct repeats of the classic TRX domain. The first and third modules contain the amino acid sequence WCPPC, which indicates the potential for TRX oxidoreductase activity, and insulin reduction assays indicate that at least the third module possesses TRX enzymatic activity. The carboxy terminus of NRX is a non-TRX module that possesses C residues in the proper sequence context to form a Zn finger. Immunolocalization preferentially to the nucleus within developing maize kernels suggests a potential for directed alteration of the reduction state of transcription factors as part of the events and pathways that regulate gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TFII-I is an unusual transcription factor possessing both basal and signal-induced transcriptional functions. Here we report the characterization of a TFII-I-related factor (MusTRD1/BEN) that regulates transcriptional functions of TFII-I by controlling its nuclear residency. MusTRD1/BEN has five or six direct repeats, each containing helix–loop–helix motifs, and, thus, belongs to the TFII-I family of transcription factors. TFII-I and MusTRD1/BEN, when expressed individually, show predominant nuclear localization. However, when the two proteins are coexpressed ectopically, MusTRD1/BEN locates almost exclusively to the nucleus, whereas TFII-I is largely excluded from the nucleus, resulting in a loss of TFII-I-dependent transcriptional activation of the c-fos promoter. Mutation of a consensus nuclear localization signal in MusTRD1/BEN results in a reversal of nuclear residency of the two proteins and a concomitant gain of c-fos promoter activity. These data suggest a means of transcriptional repression by competition at the level of nuclear occupancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic instability can be induced by unusual DNA structures and sequence repeats. We have previously demonstrated that a large palindrome in the mouse germ line derived from transgene integration is extremely unstable and undergoes stabilizing rearrangements at high frequency, often through deletions that produce asymmetry. We have now characterized other palindrome rearrangements that arise from complex homologous recombination events. The structure of the recombinants is consistent with homologous recombination occurring by a noncrossover gene conversion mechanism in which a break induced in the palindrome promotes homologous strand invasion and repair synthesis, similar to mitotic break repair events reported in mammalian cells. Some of the homologous recombination events led to expansion in the size of the palindromic locus, which in the extreme case more than doubled the number of repeats. These results may have implications for instability observed at naturally occurring palindromic or quasipalindromic sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F′ plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly −1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F′ lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called “cut-and-paste” mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5′-to-3′ DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5′-TC and CTRR-3′ termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3′-end and transpose precisely between the 5′-A and T-3′, with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute ≈2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circumsporozoite (CS) protein of malaria parasites (Plasmodium) covers the surface of sporozoites that invade hepatocytes in mammalian hosts and macrophages in avian hosts. CS genes have been characterized from many Plasmodium that infect mammals; two domains of the corresponding proteins, identified initially by their conservation (region I and region II), have been implicated in binding to hepatocytes. The CS gene from the avian parasite Plasmodium gallinaceum was characterized to compare these functional domains to those of mammalian Plasmodium and for the study of Plasmodium evolution. The P. gallinaceum protein has the characteristics of CS proteins, including a secretory signal sequence, central repeat region, regions of charged amino acids, and an anchor sequence. Comparison with CS signal sequences reveals four distinct groupings, with P. gallinaceum most closely related to the human malaria Plasmodium falciparum. The 5-amino acid sequence designated region I, which is identical in all mammalian CS and implicated in hepatocyte invasion, is different in the avian protein. The P. gallinaceum repeat region consists of 9-amino acid repeats with the consensus sequence QP(A/V)GGNGG(A/V). The conserved motif designated region II-plus, which is associated with targeting the invasion of liver cells, is also conserved in the avian protein. Phylogenetic analysis of the aligned Plasmodium CS sequences yields a tree with a topology similar to the one obtained using sequence data from the small subunit rRNA gene. The phylogeny using the CS gene supports the proposal that the human malaria P. falciparum is significantly more related to avian parasites than to other parasites infecting mammals, although the biology of sporozoite invasion is different between the avian and mammalian species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomerase is a ribonucleoprotein enzyme that uses its internal RNA moiety as a template for synthesis of telomeric repeats at chromosome ends. Here we report the purification of telomerase from Euplotes aediculatus by affinity chromatography with antisense 2'-O-methyl oligonucleotides, a method that was developed for small nuclear ribonucleoprotein particles (snRNPs). Elution of bound ribonucleoprotein from the antisense oligonucleotide under nondenaturing conditions was achieved by a novel approach, using a displacement oligonucleotide. Polypeptides of 120 kDa and 43 kDa (a doublet) copurify with the active telomerase and appear stoichiometric with telomerase RNA. A simple model for DNA end replication predicts that after semiconservative DNA replication, telomerase will extend the newly synthesized, blunt-ended leading strand. We show that purified Euplotes telomerase has no activity with blunt-ended primers. Instead, efficient extension requires 4 to 6 single-stranded nucleotides at the 3' end. Therefore, this model predicts the existence of other activities such as helicases or nucleases that generate a single-stranded 3' end from a blunt end, thus activating the end for telomerase extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (tRNA synthetases) of higher eukaryotes form a multiprotein complex. Sequence elements that are responsible for the protein assembly were searched by using a yeast two-hybrid system. Human cytoplasmic isoleucyl-tRNA synthetase is a component of the multi-tRNA synthetase complex and it contains a unique C-terminal appendix. This part of the protein was used as bait to identify an interacting protein from a HeLa cDNA library. The selected sequence represented the internal 317 amino acids of human bifunctional (glutamyl- and prolyl-) tRNA synthetase, which is also known to be a component of the complex. Both the C-terminal appendix of the isoleucyl-tRNA synthetase and the internal region of bifunctional tRNA synthetase comprise repeating sequence units, two repeats of about 90 amino acids, and three repeats of 57 amino acids, respectively. Each repeated motif of the two proteins was responsible for the interaction, but the stronger interaction was shown by the native structures containing multiple motifs. Interestingly, the N-terminal extension of human glycyl-tRNA synthetase containing a single motif homologous to those in the bifunctional tRNA synthetase also interacted with the C-terminal motif of the isoleucyl-tRNA synthetase although the enzyme is not a component of the complex. The data indicate that the multiplicity of the binding motif in the tRNA synthetases is necessary for enhancing the interaction strength and may be one of the determining factors for the tRNA synthetases to be involved in the formation of the multi-tRNA synthetase complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current evidence on the long-term evolutionary effect of insertion of sequence elements into gene regions is reviewed, restricted to cases where a sequence derived from a past insertion participates in the regulation of expression of a useful gene. Ten such examples in eukaryotes demonstrate that segments of repetitive DNA or mobile elements have been inserted in the past in gene regions, have been preserved, sometimes modified by selection, and now affect control of transcription of the adjacent gene. Included are only examples in which transcription control was modified by the insert. Several cases in which merely transcription initiation occurred in the insert were set aside. Two of the examples involved the long terminal repeats of mammalian endogenous retroviruses. Another two examples were control of transcription by repeated sequence inserts in sea urchin genomes. There are now six published examples in which Alu sequences were inserted long ago into human gene regions, were modified, and now are central in control/enhancement of transcription. The number of published examples of Alu sequences affecting gene control has grown threefold in the last year and is likely to continue growing. Taken together, all of these examples show that the insertion of sequence elements in the genome has been a significant source of regulatory variation in evolution.