904 resultados para Quasi-experimental design
Resumo:
During postharvest, lettuce is usually exposed to adverse conditions (e.g. low relative humidity) that reduce the vegetable quality. In order to evaluate its shelf life, a great number of quality attributes must be analyzed, which requires careful experimental design, and it is time consuming. In this study, the modified Global Stability Index method was applied to estimate the quality of butter lettuce at low relative humidity during storage discriminating three lettuce zones (internal, middle, and external). The results indicated that the most relevant attributes were: the external zone - relative water content, water content , ascorbic acid, and total mesophilic counts; middle zone - relative water content, water content, total chlorophyll, and ascorbic acid; internal zone - relative water content, bound water, water content, and total mesophilic counts. A mathematical model that takes into account the Global Stability Index and overall visual quality for each lettuce zone was proposed. Moreover, the Weibull distribution was applied to estimate the maximum vegetable storage time which was 5, 4, and 3 days for the internal, middle, and external zone, respectively. When analyzing the effect of storage time for each lettuce zone, all the indices evaluated in the external zone of lettuce presented significant differences (p < 0.05). For both, internal and middle zones, the attributes presented significant differences (p < 0.05), except for water content and total chlorophyll.
Resumo:
Microbial pectinolytic enzymes are known to play a commercially important role in a number of industrial processes. Two kinds of yeast can be discerned regarding the production of enzymes. One group includes those which can produce enzymes in the absence of an inducer, and the other group comprises the yeasts that produce enzymes in the presence of an inducer. The objective of this study was to investigate the influence of pectic substances, glucose, pH, and temperature on the polygalacturonase activity by Kluyveromyces marxianus CCMB 322. The yeast was grown in a fermentation broth containing different concentrations of glucose and pectic substances. The polygalacturonase activity was determined by the DNS method, and the pH and temperature were optimized using a central composite experimental design. The polygalacturonase secreted by K. marxianus CCMB 322 was partially constitutive showing optimum pH and temperature of 7.36 and 70 °C, respectively, and maintained approximately 93% of its original activity for 50 minutes at 50 °C. Thermal stability of the polygalacturonase enzyme was studied at different temperatures (50, 60, 70, and 80 °C) and different incubation times (0, 10, 20, 30, 40, and 50 minutes). This study showed that glucose can influence the regulation of the synthesis of polygalacturonase.
Resumo:
The potential use of soybean soluble polysaccharide (SSPS) as a stabilizer in acidic beverages was evaluated using rheological and stability studies. For this purpose, soy-based beverages were formulated with soy protein isolate (SPI) and soursop juice due to the low stability of this kind of dispersion. The influences of the concentrations of soybean soluble polysaccharide, calcium chloride, and soy protein isolate on the stability and rheology of soursop juice were evaluated using a factorial experimental design. Interactions between the concentrations of soybean soluble polysaccharide and soy protein isolate exerted a positive effect on the maximum Newtonian viscosity. The stability was positively influenced by the soybean soluble polysaccharide and soy protein isolate concentrations, but the interactions between soy protein isolate and CaCl2 also affected the sedimentation index. These results suggest that soybean soluble polysaccharide is effective in stabilizing fibers and proteins in acidic suspensions due to the increase in viscosity and steric effect caused by the formation of complexes between the soybean soluble polysaccharide and soy protein isolate.
Resumo:
The aim of this study was to reduce the fermentation time of pizza dough by evaluating the development of the dough during fermentation using a Chopin® rheofermentometer and verifying the influence of time and temperature using a 2² factorial design. The focus was to produce characteristic soft pizza dough with bubbles and crispy edges and soft in the center. These attributes were verified by the Quantitative Descriptive Analysis (QDA). The dough was prepared with the usual ingredients, fermented at a temperature range from 27 to 33 ºC for 30 to 42 minutes, enlarged, added with tomato sauce, baked, and frozen. The influence of the variables time and temperature on the release of carbon dioxide (H'm) was confirmed with positive and significant effect, using a rheofermentometer, which was not observed for the development or maximum height of the dough (Hm). The same fermentation conditions of the experimental design were used for the production of the pizza dough in the industrial process; it was submitted to Quantitative Descriptive Analysis (QDA), in which the samples were described by nine attributes. The results showed that some samples had the desired characteristics of pizza dough, demonstrated by the principal component analysis (PCA), indicating a 30 % fermentation time reduction when compared to the conventional process.
Resumo:
The objective of this study was to evaluate the physicochemical and microbiological parameters of pork meat submitted to dry salting. Sodium chloride (NaCl) was added at levels of 0%, 2.5%, 5%, 7.5% or 10% by the meat weight. Dry salting technique was used, which consists of rubbing the sodium chloride manually, followed by a rest period. The data were submitted to analysis of variance using a completely randomized experimental design. The means were compared by Duncan test at 5%. The salting process reduced (P < 0.05) humidity and water activity, and it increased (P < 0.05) ash, chloride, palmitic acid, and water holding capacity levels compared to those of the control. Luminosity (L*) was lower (P < 0.05) in the control, and a* color was more intense in samples with 2.5% NaCl. Cooking loss was lower (P < 0.05) in the samples salted with 5% and 10% NaCl, and similarity was observed between the levels 0 and 7.5% salt. The treatments with levels 0% and 2.5% NaCl had higher mesophilic counts. The other microbiological parameters were within limits established by law. Therefore, salting with 5% NaCl can be used in pork meat in order to maintain the physicochemical and microbiological characteristics of the final product.
Resumo:
The Rhodotorularubra biomass and carotenoids production was evaluated in sugarcane juice, molasses, and syrup based media. The effects of media supplementation with urea- nitrogen or the commercial nutrient called Nitrofos KL was also verified. The experimental design used was a completely randomized factorial with 3 substrates (juice, molasses, and syrup) and three supplementations (control, urea, and Nitrofos KL). The results were submitted to variance analysis and Tukey test at 5% probability. The highest production of yeast dry mass was obtained with molasses media supplemented with urea or Nitrofos KL (15.09 and 14.87 g/L respectively). The intracellular carotenoid production was high in the media without supplementation (0.329 mg/g). The best growth medium for the volumetric production was molasses (2.74 mg/L), while those supplemented with urea and Nitrofos KL produced 2.55 and 2.32 mg/L, respectively. The major carotenoids produced were torulene, torularhodin, and β-carotene. The lowest carbohydrate consumption was observed in the sugarcane juice medium without supplementation, while the highest consumption was observed in the urea based supplementation medium.
Resumo:
Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration) points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.
Resumo:
Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%), inlet air temperature (135-195 ºC), and feed flow rate (0.5-1.0 L.h-1) on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%), low inlet air temperature (135 ºC), and moderate feed flow rate (0.7 L.h-1) are the best spray drying conditions.
Resumo:
Spirulina platensis is a photoautotrophic mesophilic cyanobacterium. Its main sources of nutrients are nitrate, urea, and ammonium salts. Spirulina cultivation requires temperature, light intensity, and nutrient content control. This microalgae has been studied and used commercially due to its therapeutic and antioxidant potential. In addition, several studies have reported its ability to use CO2, its immune activity, and use as an adjuvant nutritive factor in the treatment of obesity. The objective of this study is the production of biomass of S. platensis using different rates of stirring, nitrogen source, amount of micronutrients, and luminosity. A 2(4) experimental design with the following factors: stirring (120 and 140 RPM), amount of nitrogen (1.5 and 2.5 g/L), amount of micronutrients (0,25 and 0,75 mL/L) (11 and 15 W), and luminosity was used. Fermentation was performed in a 500 mL conical flask with 250 mL of culture medium and 10% inoculum in an incubator with controlled stirring and luminosity. Fermentation was monitored using a spectrophotometer (560 nm), and each fermentation lasted 15 days. Of the parameters studied, luminosity is the one with the highest significance, followed by the amount of nitrogen and the interaction between stirring and micronutrients. Maximum production of biomass for 15 days was 2.70 g/L under the following conditions: luminosity15W; stirring, 120 RPM; source of nitrogen, 1.5 g/L; and micronutrients, 0.75 mL/L.
Resumo:
The objective of this study was to evaluate the effect of Moringa oleifera Lam. leaf extract on the sedimentation of impurities in the treatment of sugarcane juice and the effects on sugar quality and on the clarified juice. The experimental design used was a 4x2 factorial arrangement with four replications. The main treatments performed included the extracted original sugarcane juice, the synthetic polyelectrolyte (Flomex 9076), the leaf extract, and a control. The secondary treatments consisted of the sugarcane varieties RB92579 and RB867515. The clarification process used was simple defecation, in which the flocculating agents and the juice, limed and heated, were poured simultaneously into a decanter. The microbiological and chemico-technological characteristics of the extracted and clarified juices were evaluated. The clarified juice was concentrated up to 60° Brix (syrup) and subjected to boiling in a pilot pan using seeds to perform the graining: The sugar was recovered by centrifugation and analyzed for microbiological and chemico-technological characteristics. It was concluded that the use of the Moringa oleifera Lam. leaves extract resulted in a better quality of clarified juice and sugar.
Resumo:
Sugarcane juice with passion fruit pulp was clarified using microfiltration under different T (temperature), P (pressure), and V (tangential velocity). The effects of these processing parameters were evaluated applying a rotational central composite experimental design (RCCD) and response surface methodology (RSM). The tests were performed at a filtration pilot plant using a polyamide hollow-fiber membrane with an average pore diameter of 0.4 µm and filtration area of 0.723 m². In addition, the resistances to the permeate flux during the microfiltration were investigated according to the series resistance. The final permeate flux ranged from 7.05 to 17.84 L·h- 1·m- 2. There was a rapid decline in flux (50%) in the initial stages of microfiltration. T and V were the major variables responsible for the flux increase. The concentration polarization showed the greatest influence on the flux decline, and highest values for the flux decline rate (λ) were found when low pressures were used. In the clarified juice there was a reduction in the contents of total solids, proteins, vitamin C, and acidity, while the soluble solids, pH, and ash contents did not change. Finally, membrane process could produce high quality filtered sugarcane juice with substantial flux and increased luminosity improving organoleptical properties.
Resumo:
In biotechnological processes, the culture media components are responsible for high costs and exert a strong influence on the cyanobacteria behavior. The objective of this study was to evaluate the Arthrospira platensis growth potential for biomass production under different cultivation conditions using an experimental design. Three factors that are important for cyanobacteria growth were evaluated: sodium bicarbonate (9 to 18 g/l), sodium nitrate (1.25 to 2.5 g/l), and irradiance (20 to 120 µmol photons/m2.s–1). The results showed that the concentration of NaNO3 in the A. platensis medium can be reduced, resulting in increased concentrations of biomass produced. There was a higher biomass production due to the increase in the concentration of NaHCO3 and irradiance, mainly when these two factors varied tending towards the highest values studied. The results demonstrate the potential to produce Arthrospira platensis with lower costs and effluent generation without affecting cultivation performance.
Resumo:
The goal of this study was to determine the chemical composition of cashew apples agro-industrial residue and optimize the process of polyphenols extraction in this residue. The extraction process conditions were defined using a 24-1 fractional factorial experimental design using acetone and methanol as solvents. The independent variables were: time (30 to 90 min), temperature (30 to 50 °C), solvent concentrations (50% to 90%), agitation speed (100 to 300 rpm); the dependent variables were: total phenolic content and DPPH scavenging capacity. The optimized process was carried out by applying the Central Composite Rotational Design (CCRD) considering the results obtained with the 24-1 fractional factorial experimental design. The residue presented bioactive compounds in its composition, with emphasis on the content of total phenolic compounds (1975.64 mg/ 100 g). The extraction process was not affected by methanol; however, acetone affected the amounts of extracted phytochemicals. Extracts with high levels of polyphenols and strong DPPH scavenging capacity (> 80%) were obtained using 55% acetone, 30 minutes, 30 °C, and 150 rpm. The results showed that cashew apple residue is a potential natural source of bioactive compounds with strong antioxidant capacity. These compounds could be used partially or totally to replace synthetic antioxidants.
Resumo:
AbstractThe objective of this study was to evaluate the genetic variability for synthesis of bioactive compounds in pepper (Capsicum annuum, Solanaceae). Total phenolics, anthocyanins, carotenoids and antioxidant activity were evaluated in 14 accessions of Capsicum annuum from the Capsicum Genebank of Embrapa Temperate Agriculture (Pelotas – RS, Brazil). Thirty plants of each accession were cultivated in the field during spring and summer. The experimental design was a complete randomized block with 14 treatments (accessions) and three replications. The laboratory evaluations followed the same experimental design to field, but with two repetitions more. Seeds were discarded and opposite longitudinal portions of fruits were manually prepared for chemical analyzes. The data obtained showed high genetic variability for phenolics, anthocyanins, carotenoids and antioxidant activity. The P39, P77, P119, P143 and P302 accessions exhibited the highest levels of antioxidants, which are strongly indicated to be used in breeding programs of Capsicum peppers.
Resumo:
Abstract The camu-camu tree (Myrciaria dubia (Kunth) Mc Vaugh) is fruit-bearing tree belonging to the family Myrtaceae. This work was conducted with the purpose of evaluating the type of storage temperature and package which allow better conservation of the quality attributes of camu-camu. The experimental design utilized was the completely randomized with three replications in a factorial arrangement (3x3x8), constituted of three different storage temperatures (laboratory ambiente or 25 ± 2 °C, 15 °C and 20 °C), three types of packages (no package, PET and PVC) and fourteen days’ storage, the fruits being analyzed every two days. The fruits were evaluated as to fresh mass loss, pH, soluble solids contents, titrable acidity, ascorbic acid, carotenoids, anthocyanins, chlorophylls A and B and maturation index (SS/AT). According to the results obtained, the quality attributes and ascorbic acid content were conserved for longer time in the fruits stored on PVC-film covered expanded polystyrene trays at 15 °C. It follows that the best temperature for the storage of camu-camu is 15 °C and the package that best keeps its quality attributes is the PVC-film covered expanded polystyrene tray.