978 resultados para Quantum-mechanical calculation
Resumo:
In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.
Resumo:
Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.
Resumo:
In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.
Resumo:
2,2'-Biphenols are a large and diverse group of compounds with exceptional properties both as ligands and bioactive agents. Traditional methods for their synthesis by oxidative dimerisation are often problematic and lead to mixtures of ortho- and para-connected regioisomers. To compound these issues, an intermolecular dimerisation strategy is often inappropriate for the synthesis of heterodimers. The ‘acetal method’ provides a solution for these problems: stepwise tethering of two monomeric phenols enables heterodimer synthesis, enforces ortho regioselectivity and allows relatively facile and selective intramolecular reactions to take place. The resulting dibenzo[1,3]dioxepines have been analysed by quantum chemical calculations to obtain information about the activation barrier for ring flip between the enantiomers. Hydrolytic removal of the dioxepine acetal unit revealed the 2,2′-biphenol target.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.
Resumo:
We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.
Resumo:
While both the restoration of the blood supply and an appropriate local mechanical environment are critical for uneventful bone healing, their influence on each other remains unclear. Human bone fracture haematomas (<72h post-trauma) were cultivated for 3 days in fibrin matrices, with or without cyclic compression. Conditioned medium from these cultures enhanced the formation of vessel-like networks by HMEC-1 cells, and mechanical loading further elevated it, without affecting the cells’ metabolic activity. While haematomas released the angiogenesis-regulators, VEGF and TGF-β1, their concentrations were not affected by mechanical loading. However, direct cyclic stretching of the HMEC-1 cells decreased network formation. The appearance of the networks and a trend towards elevated VEGF under strain suggested physical disruption rather than biochemical modulation as the responsible mechanism. Thus, early fracture haematomas and their mechanical loading increase the paracrine stimulation of endothelial organisation in vitro, but direct periodic strains may disrupt or impair vessel assembly in otherwise favourable conditions.
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.
Resumo:
Amiton (O,O-diethyl-S-[2-(diethylamino)ethyl]phosphorothiolate), otherwise known as VG, is listed in schedule 2 of the Chemical Weapons Convention (CWC) and has a structure closely related to VX (O-ethyl-S-(2-diisopropylamino)ethylmethylphosphonothiolate). Fragmentation of protonated VG in the gas phase was performed using electrospray ionisation ion trap mass spectrometry (ESI-ITMS) and revealed several characteristic product ions. Quantum chemical calculations provide the most probable structures for these ions as well as the likely unimolecular mechanisms by which they are formed. The decomposition pathways predicted by computation are consistent with deuterium-labeling studies. The combination of experimental and theoretical data suggests that the fragmentation pathways of VG and analogous organophosphorus nerve agents, such as VX and Russian VX, are predictable and thus ESI tandem mass spectrometry is a powerful tool for the verification of unknown compounds listed in the CWC. Copyright (c) 2006 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.
Resumo:
Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.
Resumo:
Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.